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Figure 9.1 The crystalline structure of quartz allows it to cleave into smooth planes that refract light, making it suitable for
jewelry. Silicon, the main element in quartz, also forms crystals in its pure form, and these crystals form the basis for the
worldwide semiconductor electronics industry. (credit left: modification of work by the United States Geological Survey)
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Introduction
In this chapter, we examine applications of quantum mechanics to more complex systems, such as molecules, metals,
semiconductors, and superconductors. We review and develop concepts of the previous chapters, including wave functions,
orbitals, and quantum states. We also introduce many new concepts, including covalent bonding, rotational energy levels,
Fermi energy, energy bands, doping, and Cooper pairs.

The main topic in this chapter is the crystal structure of solids. For centuries, crystalline solids have been prized for their
beauty, including gems like diamonds and emeralds, as well as geological crystals of quartz and metallic ores. But the
crystalline structures of semiconductors such as silicon have also made possible the electronics industry of today. In this
chapter, we study how the structures of solids give them properties from strength and transparency to electrical conductivity.
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9.1 | Types of Molecular Bonds

Learning Objectives

By the end of this section, you will be able to:

• Distinguish between the different types of molecular bonds

• Determine the dissociation energy of a molecule using the concepts ionization energy, electron
affinity, and Coulomb force

• Describe covalent bonding in terms of exchange symmetry

• Explain the physical structure of a molecule in terms of the concept of hybridization

Quantum mechanics has been extraordinarily successful at explaining the structure and bonding in molecules, and is
therefore the foundation for all of chemistry. Quantum chemistry, as it is sometimes called, explains such basic questions
as why H2 O molecules exist, why the bonding angle between hydrogen atoms in this molecule is precisely 104.5° , and

why these molecules bind together to form liquid water at room temperature. Applying quantum mechanics to molecules
can be very difficult mathematically, so our discussion will be qualitative only.

As we study molecules and then solids, we will use many different scientific models. In some cases, we look at a molecule
or crystal as a set of point nuclei with electrons whizzing around the outside in well-defined trajectories, as in the Bohr
model. In other cases, we employ our full knowledge of quantum mechanics to study these systems using wave functions
and the concept of electron spin. It is important to remember that we study modern physics with models, and that different
models are useful for different purposes. We do not always use the most powerful model, when a less-powerful, easier-to-
use model will do the job.

Types of Bonds
Chemical units form by many different kinds of chemical bonds. An ionic bond forms when an electron transfers from one
atom to another. A covalent bond occurs when two or more atoms share electrons. A van der Waals bond occurs due to
the attraction of charge-polarized molecules and is considerably weaker than ionic or covalent bonds. Many other types of
bonding exist as well. Often, bonding occurs via more than one mechanism. The focus of this section is ionic and covalent
bonding.

Ionic bonds

The ionic bond is perhaps the easiest type of bonding to understand. It explains the formation of salt compounds, such
as sodium chloride, NaCl. The sodium atom (symbol Na) has the same electron arrangement as a neon atom plus one 3s
electron. Only 5.14 eV of energy is required to remove this one electron from the sodium atom. Therefore, Na can easily
give up or donate this electron to an adjacent (nearby) atom, attaining a more stable arrangement of electrons. Chlorine
(symbol Cl) requires just one electron to complete its valence shell, so it readily accepts this electron if it is near the sodium
atom. We therefore say that chlorine has a large electron affinity, which is the energy associated with an accepted electron.
The energy given up by the chlorine atom in this process is 3.62 eV. After the electron transfers from the sodium atom to
the chlorine atom, the sodium atom becomes a positive ion and the chlorine atom becomes a negative ion. The total energy
required for this transfer is given by

Etransfer = 5.14 eV − 3.62 eV = 1.52 eV.

The positive sodium ion and negative chloride ion experience an attractive Coulomb force. The potential energy associated
with this force is given by

(9.1)Ucoul = − ke2
r0

,

where ke2 = 1.440 eV-nm and r0 is the distance between the ions.

As the sodium and chloride ions move together (“descend the potential energy hill”), the force of attraction between the ions
becomes stronger. However, if the ions become too close, core-electron wave functions in the two ions begin to overlap.
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Due to the exclusion principle, this action promotes the core electrons—and therefore the entire molecule—into a higher
energy state. The equilibrium separation distance (or bond length) between the ions occurs when the molecule is in its
lowest energy state. For diatomic NaCl, this distance is 0.236 nm. Figure 9.2 shows the total energy of NaCl as a function
of the distance of separation between ions.

Figure 9.2 Graph of energy versus ionic separation for
sodium chloride. Equilibrium separation occur when the total
energy is a minimum (−4.36 eV) .

The total energy required to form a single salt unit is

(9.2)Uform = Etransfer + Ucoul + Uex,

where Uex is the energy associated with the repulsion between core electrons due to Pauli’s exclusion principle. The value

of Uform must be negative for the bond to form spontaneously. The dissociation energy is defined as the energy required

to separate the unit into its constituent ions, written

(9.3)Udiss = −Uform

Every diatomic formula unit has its own characteristic dissociation energy and equilibrium separation length. Sample values
are given in Table 9.1.

Molecule Dissociation Energy (eV) Equilibrium Separation (nm) ⎛
⎝Bond length⎞⎠

NaCl 4.26 0.236

NaF 4.99 0.193

NaBr 3.8 0.250

NaI 3.1 0.271

NaH 2.08 0.189

LiCl 4.86 0.202

LiH 2.47 0.239

Table 9.1 Bond Length
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9.1

Molecule Dissociation Energy (eV) Equilibrium Separation (nm) ⎛
⎝Bond length⎞⎠

LiI 3.67 0.238

KCl 4.43 0.267

KBr 3.97 0.282

RbF 5.12 0.227

RbCl 4.64 0.279

CsI 3.57 0.337

H-H 4.5 0.075

N-N 9.8 0.11

O-O 5.2 0.12

F-F 1.6 0.14

Cl-Cl 2.5 0.20

Table 9.1 Bond Length

Example 9.1

The Energy of Salt

What is the dissociation energy of a salt formula unit (NaCl)?

Strategy

Sodium chloride (NaCl) is a salt formed by ionic bonds. The energy change associated with this bond depends
on three main processes: the ionization of Na; the acceptance of the electron from a Na atom by a Cl atom; and

Coulomb attraction of the resulting ions ( Na+ and Cl− ). If the ions get too close, they repel due to the exclusion

principle (0.32 eV). The equilibrium separation distance is r0 = 0.236 nm.

Solution

The energy change associated with the transfer of an electron from Na to Cl is 1.52 eV, as discussed earlier in this
section. At equilibrium separation, the atoms are r0 = 0.236 nm apart. The electrostatic potential energy of the

atoms is

Ucoul = − ke2
r0

= − 1.44 eV · nm
0.236 nm = −6.10 eV.

The total energy difference associated with the formation of a NaCl formula unit is

Eform = Exfr + Ucoul + Uex = 1.52 eV + (−6.10 eV) + 0.32 eV = −4.26 eV.

Therefore, the dissociated energy of NaCl is 4.26 eV.

Significance

The formation of a NaCl formula unit by ionic bonding is energetically favorable. The dissociation energy, or

energy required to separate the NaCl unit into Na+ and Cl− ions is 4.26 eV, consistent with Figure 9.2.

Check Your Understanding Why is the potential energy associated with the exclusion principle positive
in Example 9.1?
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For a sodium ion in an ionic NaCl crystal, the expression for Coulomb potential energy Ucoul must be modified by a factor

known as the Madelung constant. This factor takes into account the interaction of the sodium ion with all nearby chloride
and sodium ions. The Madelung constant for a NaCl crystal is about 1.75. This value implies an equilibrium separation

distance between Na+ and Cl− ions of 0.280 nm—slightly larger than for diatomic NaCl. We will return to this point

again later.

Covalent bonds

In an ionic bond, an electron transfers from one atom to another. However, in a covalent bond, an electron is shared between
two atoms. The ionic bonding mechanism cannot explain the existence of such molecules as H2 , O2, and CO, since

no separation distance exists for which the negative potential energy of attraction is greater in magnitude than the energy
needed to create ions. Understanding precisely how such molecules are covalently bonded relies on a deeper understanding
of quantum mechanics that goes beyond the coverage of this book, but we will qualitatively describe the mechanisms in the
following section.

Covalent bonds can be understood using the simple example of a H2
+ molecule, which consists of one electron in the

electric field of two protons. This system can be modeled by an electron in a double square well (Figure 9.3). The electron
is equally likely to be found in each well, so the wave function is either symmetric or antisymmetric about a point midway
between the wells.

Figure 9.3 A one-dimensional model of covalent bonding in a

H2
+ molecule. (a) The symmetric wave function of the electron

shared by the two positively charged protons (represented by the two
finite square wells). (b) The corresponding antisymmetric wave
function.

Now imagine that the two wells are separated by a large distance. In the ground state, the wave function exists in one of two
possible states: either a single positive peak (a sine wave-like “hump”) in both wells (symmetric case), or a positive peak
in one well and a negative peak in the other (antisymmetric case). These states have the same energy. However, when the
wells are brought together, the symmetric wave function becomes the ground state and the antisymmetric state becomes the
first excited state—in other words, the energy level of the electron is split. Notice, the space-symmetric state becomes the
energetically favorable (lower energy) state.

The same analysis is appropriate for an electron bound to two hydrogen atoms. Here, the shapes of the ground-state wave

functions have the form e
−r/a0 or e

(−|x|/a0)
in one dimension. The energetically favorable, space-symmetric state implies

a high charge density midway between the protons where the electrons are likely to pull the positively charged protons
together.

If a second electron is added to this system to form a H2 molecule, the wave function must describe both particles,

including their spatial relationship and relative spins. This wave function must also respect the indistinguishability of
electrons. (“If you’ve seen one electron, you’ve seen them all.”) In particular, switching or exchanging the electrons should
not produce an observable effect, a property called exchange symmetry. Exchange symmetry can be symmetric, producing
no change in the wave function, or antisymmetric, producing an overall change in the sign of the wave function—neither of
which is observable.

As we discuss later, the total wave function of two electrons must be antisymmetric on exchange. For example, two
electrons bound to a hydrogen molecule can be in a space-symmetric state with antiparallel spins (↑ ↓ ) or space-

antisymmetric state with parallel spins (↑ ↑) . The state with antiparallel spins is energetically favorable and therefore

Chapter 9 | Condensed Matter Physics 407



used in covalent bonding. If the protons are drawn too closely together, however, repulsion between the protons becomes
important. (In other molecules, this effect is supplied by the exclusion principle.) As a result, H2 reaches an equilibrium

separation of about 0.074 nm with a binding energy is 4.52 eV.

Visit this PBS Learning Media tutorial and interactive simulation (https://openstaxcollege.org/l/
21covalentbond) to explore the attractive and repulsive forces that act on atomic particles and covalent bonding
in a H2 molecule.

Quantum mechanics excludes many types of molecules. For example, the molecule H3 does not form, because if a third

H atom approaches diatomic hydrogen, the wave function of the electron in this atom overlaps the electrons in the other
two atoms. If all three electrons are in the ground states of their respective atoms, one pair of electrons shares all the same
quantum numbers, which is forbidden by the exclusion principle. Instead, one of the electrons is forced into a higher energy
state. No separation between three protons exists for which the total energy change of this process is negative—that is,
where bonding occurs spontaneously. Similarly, He2 is not covalently bonded under normal conditions, because these

atoms have no valence electrons to share. As the atoms are brought together, the wave functions of the core electrons
overlap, and due to the exclusion principle, the electrons are forced into a higher energy state. No separation exists for which
such a molecule is energetically favorable.

Bonding in Polyatomic Molecules
A polyatomic molecule is a molecule made of more than two atoms. Examples range from a simple water molecule to
a complex protein molecule. The structures of these molecules can often be understood in terms of covalent bonding and
hybridization. Hybridization is a change in the energy structure of an atom in which mixed states (states that can be written
as a linear superposition of others) participate in bonding.

To illustrate hybridization, consider the bonding in a simple water molecule, H2 O. The electron configuration of oxygen is

1s2 2s2 2p4. The 1s and 2s electrons are in “closed shells” and do not participate in bonding. The remaining four electrons

are the valence electrons. These electrons can fill six possible states ( l = 1 , m = 0 , ±1 , plus spin up and down). The

energies of these states are the same, so the oxygen atom can exploit any linear combination of these states in bonding
with the hydrogen atoms. These linear combinations (which you learned about in the chapter on atomic structure) are called
atomic orbitals, and they are denoted by px, py, and pz. The electron charge distributions for these orbitals are given in

Figure 9.4.

Figure 9.4 Oxygen has four valence electrons. In the context of a water
molecule, two valence electrons fill the pz orbital and one electron fills

each of the px and py orbitals. The px and py orbitals are used in

bonding with hydrogen atoms to form H2 O . Without repulsion of H

atoms, the bond angle between hydrogen atoms would be 90 degrees.

The transformation of the electron wave functions of oxygen to px, py, and pz orbitals in the presence of the hydrogen

atoms is an example of hybridization. Two electrons are found in the pz orbital with paired spins (↑ ↓ ) . One electron is

found in each of the px and py orbitals, with unpaired spins. The latter orbitals participate in bonding with the hydrogen

atoms. Based on Figure 9.4, we expect the bonding angle for H—O—H to be 90° . However, if we include the effects of
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repulsion between atoms, the bond angle is 104.5° . The same arguments can be used to understand the tetrahedral shape

of methane ⎛
⎝CH4) and other molecules.

9.2 | Molecular Spectra

Learning Objectives

By the end of this section, you will be able to:

• Use the concepts of vibrational and rotational energy to describe energy transitions in a
diatomic molecule

• Explain key features of a vibrational-rotational energy spectrum of a diatomic molecule

• Estimate allowed energies of a rotating molecule

• Determine the equilibrium separation distance between atoms in a diatomic molecule from the
vibrational-rotational absorption spectrum

Molecular energy levels are more complicated than atomic energy levels because molecules can also vibrate and rotate. The
energies associated with such motions lie in different ranges and can therefore be studied separately. Electronic transitions

are of order 1 eV, vibrational transitions are of order 10−2 eV, and rotational transitions are of order 10−3 eV. For

complex molecules, these energy changes are difficult to characterize, so we begin with the simple case of a diatomic
molecule.

According to classical mechanics, the energy of rotation of a diatomic molecule is given by

(9.4)Er = L2

2I ,

where I is the moment of inertia and L is the angular momentum. According to quantum mechanics, the rotational angular
momentum is quantized:

(9.5)L = l(l + 1)ℏ (l = 0, 1, 2, 3,...),

where l is the orbital angular quantum number. The allowed rotational energy level of a diatomic molecule is therefore

(9.6)Er = l(l + 1)ℏ2

2I = l(l + 1)E0r (l = 0, 1, 2, 3,...),

where the characteristic rotational energy of a molecule is defined as

(9.7)E0r = ℏ2

2I .

For a diatomic molecule, the moment of inertia with reduced mass µ is

(9.8)I = µr0
2,

where r0 is the total distance between the atoms. The energy difference between rotational levels is therefore

(9.9)ΔEr = El + 1 − El = 2(l + 1) E0r.
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9.2

A detailed study of transitions between rotational energy levels brought about by the absorption or emission of radiation (a
so-called electric dipole transition) requires that

(9.10)Δl = ± 1.

This rule, known as a selection rule, limits the possible transitions from one quantum state to another. Equation 9.10 is the
selection rule for rotational energy transitions. It applies only to diatomic molecules that have an electric dipole moment. For
this reason, symmetric molecules such as H2 and N2 do not experience rotational energy transitions due to the absorption

or emission of electromagnetic radiation.

Example 9.2

The Rotational Energy of HCl

Determine the lowest three rotational energy levels of a hydrogen chloride (HCl) molecule.

Strategy

Hydrogen chloride (HCl) is a diatomic molecule with an equilibrium separation distance of 0.127 nm. Rotational
energy levels depend only on the momentum of inertia I and the orbital angular momentum quantum number l
(in this case, l = 0 , 1, and 2). The momentum of inertia depends, in turn, on the equilibrium separation distance

(which is given) and the reduced mass, which depends on the masses of the H and Cl atoms.

Solution

First, we compute the reduced mass. If Particle 1 is hydrogen and Particle 2 is chloride, we have

µ = m1 m2
m1 + m2

= (1.0 u)(35.4 u)
1.0 u + 35.4 u = 0.97 u = 0.97 u

⎛

⎝
⎜
⎜931.5MeV

c2
1 u

⎞

⎠
⎟
⎟ = 906MeV

c2 .

The corresponding rest mass energy is therefore

µc2 = 9.06 × 108 eV.

This allows us to calculate the characteristic energy:

E0r = ℏ2

2I = ℏ2

2⎛
⎝µr0

2⎞
⎠

= (ℏc)2

2⎛
⎝µc2⎞

⎠r0
2 = (197.3 eV · nm)2

2⎛
⎝9.06 × 108 eV⎞

⎠(0.127 nm)2 = 1.33 × 10−3 eV.

(Notice how this expression is written in terms of the rest mass energy. This technique is common in modern
physics calculations.) The rotational energy levels are given by

Er = l(l + 1)ℏ2

2I = l(l + 1)E0r,

where l is the orbital quantum number. The three lowest rotational energy levels of an HCl molecule are therefore

l = 0; Er = 0 eV ⎛
⎝no rotation⎞

⎠,

l = 1; Er = 2 E0r = 2.66 × 10−3 eV,

l = 2; Er = 6 E0r = 7.99 × 10−3 eV.

Significance

The rotational spectrum is associated with weak transitions (1/1000 to 1/100 of an eV). By comparison, the energy
of an electron in the ground state of hydrogen is −13.6 eV .

Check Your Understanding What does the energy separation between absorption lines in a rotational
spectrum of a diatomic molecule tell you?
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The vibrational energy level, which is the energy level associated with the vibrational energy of a molecule, is more
difficult to estimate than the rotational energy level. However, we can estimate these levels by assuming that the two atoms
in the diatomic molecule are connected by an ideal spring of spring constant k. The potential energy of this spring system is

(9.11)Uosc = 1
2k Δr2,

Where Δr is a change in the “natural length” of the molecule along a line that connects the atoms. Solving Schrödinger’s

equation for this potential gives

(9.12)En = ⎛
⎝n + 1

2
⎞
⎠ℏω (n = 0, 1, 2, …),

Where ω is the natural angular frequency of vibration and n is the vibrational quantum number. The prediction that

vibrational energy levels are evenly spaced (ΔE = ℏω) turns out to be good at lower energies.

A detailed study of transitions between vibrational energy levels induced by the absorption or emission of radiation (and the
specifically so-called electric dipole transition) requires that

(9.13)Δn = ± 1.

Equation 9.13 represents the selection rule for vibrational energy transitions. As mentioned before, this rule applies only
to diatomic molecules that have an electric dipole moment. Symmetric molecules do not experience such transitions.

Due to the selection rules, the absorption or emission of radiation by a diatomic molecule involves a transition in
vibrational and rotational states. Specifically, if the vibrational quantum number (n) changes by one unit, then the rotational
quantum number (l) changes by one unit. An energy-level diagram of a possible transition is given in Figure 9.5.
The absorption spectrum for such transitions in hydrogen chloride (HCl) is shown in Figure 9.6. The absorption peaks
are due to transitions from the n = 0 to n = 1 vibrational states. Energy differences for the band of peaks at the left

and right are, respectively, ΔEl → l + 1 = ℏω + 2(l + 1)E0r = ℏω + 2E0r, ℏω + 4E0r, ℏω + 6E0r, … ⎛
⎝right band⎞

⎠ and

ΔEl → l−1 = ℏω − 2lE0r = ℏω − 2E0r, ℏω − 4E0r, ℏω − 6E0r, … (left band⎞
⎠.

The moment of inertia can then be determined from the energy spacing between individual peaks ⎛
⎝2E0r

⎞
⎠ or from the gap

between the left and right bands (4E0r) . The frequency at the center of this gap is the frequency of vibration.

Figure 9.5 Three types of energy levels in a diatomic
molecule: electronic, vibrational, and rotational. If the
vibrational quantum number (n) changes by one unit, then the
rotational quantum number (l) changes by one unit.
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Figure 9.6 Absorption spectrum of hydrogen chloride (HCl) from the n = 0 to n = 1 vibrational levels. The discrete peaks

indicate a quantization of the angular momentum of the molecule. The bands to the left indicate a decrease in angular momentum,
whereas those to the right indicate an increase in angular momentum.

9.3 | Bonding in Crystalline Solids

Learning Objectives

By the end of this section, you will be able to:

• Describe the packing structures of common solids

• Explain the difference between bonding in a solid and in a molecule

• Determine the equilibrium separation distance given crystal properties

• Determine the dissociation energy of a salt given crystal properties

Beginning in this section, we study crystalline solids, which consist of atoms arranged in an extended regular pattern called
a lattice. Solids that do not or are unable to form crystals are classified as amorphous solids. Although amorphous solids
(like glass) have a variety of interesting technological applications, the focus of this chapter will be on crystalline solids.

Atoms arrange themselves in a lattice to form a crystal because of a net attractive force between their constituent electrons
and atomic nuclei. The crystals formed by the bonding of atoms belong to one of three categories, classified by their
bonding: ionic, covalent, and metallic. Molecules can also bond together to form crystals; these bonds, not discussed here,
are classified as molecular. Early in the twentieth century, the atomic model of a solid was speculative. We now have direct
evidence of atoms in solids (Figure 9.7).
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Figure 9.7 An image made with a scanning tunneling microscope of the surface of graphite.
The peaks represent the atoms, which are arranged in hexagons. The scale is in angstroms.

Ionic Bonding in Solids
Many solids form by ionic bonding. A prototypical example is the sodium chloride crystal, as we discussed earlier. Electrons
transfer from sodium atoms to adjacent chlorine atoms, since the valence electrons in sodium are loosely bound and chlorine
has a large electron affinity. The positively charged sodium ions and negatively charged chlorine (chloride) ions organize
into an extended regular array of atoms (Figure 9.8).

Figure 9.8 Structure of the sodium chloride crystal. The
sodium and chloride ions are arranged in a face-centered cubic
(FCC) structure.

The charge distributions of the sodium and chloride ions are spherically symmetric, and the chloride ion is about two times
the diameter of the sodium ion. The lowest energy arrangement of these ions is called the face-centered cubic (FCC)
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structure. In this structure, each ion is closest to six ions of the other species. The unit cell is a cube—an atom occupies the

center and corners of each “face” of the cube. The attractive potential energy of the Na+ ion due to the fields of these six

Cl– ions is written

(9.14)U1 = −6 e2

4πε0 r

where the minus sign designates an attractive potential (and we identify k = 1/4πε0 ). At a distance 2r are its next-

nearest neighbors: twelve Na+ ions of the same charge. The total repulsive potential energy associated with these ions is

(9.15)U2 = 12 e2

4πε0 2r
.

Next closest are eight Cl− ions a distance 3r from the Na+ ion. The potential energy of the Na+ ion in the field of

these eight ions is

(9.16)U3 = −8 e2

4πε0 3r
.

Continuing in the same manner with alternate sets of Cl− and Na+ ions, we find that the net attractive potential energy

UA of the single Na+ ion can be written as

(9.17)Ucoul = −α e2

4πε0 r

where α is the Madelung constant, introduced earlier. From this analysis, we can see that this constant is the infinite

converging sum

(9.18)α = 6 − 12
2

+ 8
3

+ ⋯.

Distant ions make a significant contribution to this sum, so it converges slowly, and many terms must be used to calculate
α accurately. For all FCC ionic solids, α is approximately 1.75.

Other possible packing arrangements of atoms in solids include simple cubic and body-centered cubic (BCC). These three
different packing structures of solids are compared in Figure 9.9. The first row represents the location, but not the size, of
the ions; the second row indicates the unit cells of each structure or lattice; and the third row represents the location and size
of the ions. The BCC structure has eight nearest neighbors, with a Madelung constant of about 1.76—only slightly different
from that for the FCC structure. Determining the Madelung constant for specific solids is difficult work and the subject of
current research.
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Figure 9.9 Packing structures for solids from left to right: (a) simple cubic, (b) body-centered cubic (BCC), and (c) face-
centered cubic (FCC). Each crystal structure minimizes the energy of the system.

The energy of the sodium ions is not entirely due to attractive forces between oppositely charged ions. If the ions are bought
too close together, the wave functions of core electrons of the ions overlap, and the electrons repel due to the exclusion

principle. The total potential energy of the Na+ ion is therefore the sum of the attractive Coulomb potential (Ucoul) and

the repulsive potential associated with the exclusion principle (Uex). Calculating this repulsive potential requires powerful

computers. Fortunately, however, this energy can be described accurately by a simple formula that contains adjustable
parameters:

(9.19)Uex = A
rn

where the parameters A and n are chosen to give predictions consistent with experimental data. For the problem at the end of

this chapter, the parameter n is referred to as the repulsion constant. The total potential energy of the Na+ ion is therefore

(9.20)U = − α e2

4 πε0 r + A
rn.

At equilibrium, there is no net force on the ion, so the distance between neighboring Na+ and Cl− ions must be the value
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r0 for which U is a minimum. Setting dU
dr = 0 , we have

(9.21)0 = αe2

4πε0 r0
2 − nA

r0
n + 1.

Thus,

(9.22)
A = αe2 r0

n − 1

4πε0 n .

Inserting this expression into the expression for the total potential energy, we have

(9.23)U = − αe2

4πε0 r0

⎡
⎣

r0
r − 1

n
⎛
⎝
r0
r

⎞
⎠
n⎤
⎦.

Notice that the total potential energy now has only one adjustable parameter, n. The parameter A has been replaced by a
function involving r0 , the equilibrium separation distance, which can be measured by a diffraction experiment (you learned

about diffraction in a previous chapter). The total potential energy is plotted in Figure 9.10 for n = 8 , the approximate

value of n for NaCl.

Figure 9.10 The potential energy of a sodium ion in a NaCl
crystal for n = 8 . The equilibrium bond length occurs when the

energy is a minimized.

As long as n > 1 , the curve for U has the same general shape: U approaches infinity as r → 0 and U approaches zero as

r → ∞ . The minimum value of the potential energy is given by

(9.24)Umin (r = r0) = −αke2
r0

⎛
⎝1 − 1

n
⎞
⎠.

The energy per ion pair needed to separate the crystal into ions is therefore
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(9.25)Udiss = αke2
r0

⎛
⎝1 − 1

n
⎞
⎠.

This is the dissociation energy of the solid. The dissociation energy can also be used to describe the total energy needed
to break a mole of a solid into its constituent ions, often expressed in kJ/mole. The dissociation energy can be determined
experimentally using the latent heat of vaporization. Sample values are given in the following table.

F− Cl− Br− I−

Li+ 1036 853 807 757

Na+ 923 787 747 704

K+ 821 715 682 649

Rb+ 785 689 660 630

Cs+ 740 659 631 604

Table 9.2 Lattice Energy for Alkali Metal
Halides

Thus, we can determine the Madelung constant from the crystal structure and n from the lattice energy. For NaCl, we

have r0 = 2.81 Å , n ≈ 8 , and Udiss = 7.84 eV/ion pair. This dissociation energy is relatively large. The most energetic

photon from the visible spectrum, for example, has an energy of approximately

h f = (4.14 × 10−15 eV · s)(7.5 × 1014 Hz) = 3.1 eV.

Because the ions in crystals are so tightly bound, ionic crystals have the following general characteristics:

1. They are fairly hard and stable.

2. They vaporize at relatively high temperatures (1000 to 2000 K).

3. They are transparent to visible radiation, because photons in the visible portion of the spectrum are not energetic
enough to excite an electron from its ground state to an excited state.

4. They are poor electrical conductors, because they contain effectively no free electrons.

5. They are usually soluble in water, because the water molecule has a large dipole moment whose electric field is
strong enough to break the electrostatic bonds between the ions.

Example 9.3

The Dissociation Energy of Salt

Determine the dissociation energy of sodium chloride (NaCl) in kJ/mol. (Hint: The repulsion constant n of NaCl
is approximately 8.)

Strategy

A sodium chloride crystal has an equilibrium separation of 0.282 nm. (Compare this value with 0.236 nm for a
free diatomic unit of NaCl.) The dissociation energy depends on the separation distance, repulsion constant, and
Madelung constant for an FCC structure. The separation distance depends in turn on the molar mass and measured
density. We can determine the separation distance, and then use this value to determine the dissociation energy
for one mole of the solid.

Solution

The atomic masses of Na and Cl are 23.0 u and 58.4 u, so the molar mass of NaCl is 58.4 g/mol. The density of

NaCl is 2.16 g/cm3 . The relationship between these quantities is
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9.3

ρ = M
V = M

2NA r0
3,

where M is the mass of one mole of salt, NA is Avogadro’s number, and r0 is the equilibrium separation

distance. The factor 2 is needed since both the sodium and chloride ions represent a cubic volume r0
3 . Solving

for the distance, we get

r0
3 = M

2NA ρ = 58.4g/mol
2⎛

⎝6.03 × 1023⎞
⎠
⎛
⎝2.160g/cm3⎞

⎠
= 2.23 × 10−23 cm3,

or

r0 = 2.80 × 10−8 cm = 0.280 nm.

The potential energy of one ion pair ⎛
⎝Na+ Cl–⎞

⎠ is

U = −αke2
r0

⎛
⎝1 − 1

n
⎞
⎠,

where α is the Madelung constant, r0 is the equilibrium separation distance, and n is the repulsion constant.

NaCl is FCC, so the Madelung constant is α = 1.7476. Substituting these values, we get

U = −1.75 1.44 eV · nm
0.280 nm

⎛
⎝1 − 1

8
⎞
⎠ = −7.88 eV

ion pair.

The dissociation energy of one mole of sodium chloride is therefore

D = ⎛
⎝
7.88 eV
ion pair

⎞
⎠
⎛

⎝
⎜

23.052 kcal
1 mol
1 eV

ion pair

⎞

⎠
⎟ = 182 kcal/mol = 760 kJ/mol.

Significance

This theoretical value of the dissociation energy of 766 kJ/mol is close to the accepted experimental value of
787 kJ/mol. Notice that for larger density, the equilibrium separation distance between ion pairs is smaller, as
expected. This small separation distance drives up the force between ions and therefore the dissociation energy.
The conversion at the end of the equation took advantage of the conversion factor 1 kJ = 0.239 kcal.

Check Your Understanding If the dissociation energy were larger, would that make it easier or more
difficult to break the solid apart?

Covalent Bonding in Solids
Crystals can also be formed by covalent bonding. For example, covalent bonds are responsible for holding carbon atoms

together in diamond crystals. The electron configuration of the carbon atom is 1s2 2s2 2p2 —a He core plus four valence

electrons. This electron configuration is four electrons short of a full shell, so by sharing these four electrons with other
carbon atoms in a covalent bond, the shells of all carbon atoms are filled. Diamond has a more complicated structure than
most ionic crystals (Figure 9.11). Each carbon atom is the center of a regular tetrahedron, and the angle between the bonds
is 110°. This angle is a direct consequence of the directionality of the p orbitals of carbon atoms.
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Figure 9.11 Structure of the diamond crystal. (a) The single carbon atom represented by the dark blue sphere is covalently
bonded to the four carbon atoms represented by the light blue spheres. (b) Gem-quality diamonds can be cleaved along smooth
planes, which gives a large number of angles that cause total internal reflection of incident light, and thus gives diamonds their
prized brilliance.

Covalently bonded crystals are not as uniform as ionic crystals but are reasonably hard, difficult to melt, and are insoluble
in water. For example, diamond has an extremely high melting temperature (4000 K) and is transparent to visible light. In
comparison, covalently bonded tin (also known as alpha-tin, which is nonmetallic) is relatively soft, melts at 600 K, and
reflects visible light. Two other important examples of covalently bonded crystals are silicon and germanium. Both of these
solids are used extensively in the manufacture of diodes, transistors, and integrated circuits. We will return to these materials
later in our discussion of semiconductors.

Metallic Bonding in Solids
As the name implies, metallic bonding is responsible for the formation of metallic crystals. The valence electrons are
essentially free of the atoms and are able to move relatively easily throughout the metallic crystal. Bonding is due to the
attractive forces between the positive ions and the conduction electrons. Metallic bonds are weaker than ionic or covalent
bonds, with dissociation energies in the range 1 − 3 eV .

9.4 | Free Electron Model of Metals

Learning Objectives

By the end of this section, you will be able to:

• Describe the classical free electron model of metals in terms of the concept electron number
density

• Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle

• Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of molecules. Rather
than sharing and exchanging electrons, a metal is essentially held together by a system of free electrons that wander
throughout the solid. The simplest model of a metal is the free electron model. This model views electrons as a gas. We first
consider the simple one-dimensional case in which electrons move freely along a line, such as through a very thin metal rod.
The potential function U(x) for this case is a one-dimensional infinite square well where the walls of the well correspond
to the edges of the rod. This model ignores the interactions between the electrons but respects the exclusion principle. For
the special case of T = 0 K, N electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin

down), until the highest energy level is filled. The highest energy filled is called the Fermi energy.
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The one-dimensional free electron model can be improved by considering the three-dimensional case: electrons moving
freely in a three-dimensional metal block. This system is modeled by a three-dimensional infinite square well. Determining
the allowed energy states requires us to solve the time-independent Schrödinger equation

(9.26)
− h2

2me

⎛

⎝
⎜ ∂2

∂ x2 + ∂2

∂ y2 + ∂2

∂z2

⎞

⎠
⎟ψ(x, y, z) = E ψ(x, y, z),

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave functions
describing the electron’s quantum states can be written as

(9.27)
ψ(x, y, z) = ⎛

⎝
2
Lx

sin nx πx
Lx

⎞
⎠
⎛
⎝

2
Ly

sin
ny πy

Ly

⎞
⎠
⎛
⎝

2
Lz

sin nz πz
Lz

⎞
⎠,

where nx, ny, and nz are positive integers representing quantum numbers corresponding to the motion in the x-, y-, and

z-directions, respectively, and Lx, Ly, and Lz are the dimensions of the box in those directions. Equation 9.27 is simply

the product of three one-dimensional wave functions. The allowed energies of an electron in a cube (L = Lx = Ly = Lz)

are

(9.28)E = π2 ℏ2

2mL2
⎛
⎝n1

2 + n2
2 + n3

2⎞
⎠.

Associated with each set of quantum numbers (nx, ny, nz) are two quantum states, spin up and spin down. In a real

material, the number of filled states is enormous. For example, in a cubic centimeter of metal, this number is on the order

of 1022. Counting how many particles are in which state is difficult work, which often requires the help of a powerful

computer. The effort is worthwhile, however, because this information is often an effective way to check the model.

Example 9.4

Energy of a Metal Cube

Consider a solid metal cube of edge length 2.0 cm. (a) What is the lowest energy level for an electron within the
metal? (b) What is the spacing between this level and the next energy level?

Strategy

An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and
smallest quantum number: nx, ny, nz = (1, 1, 1). Equation 9.28 supplies this “ground state” energy value.

Since the energy of the electron increases with the quantum number, the next highest level involves the smallest
increase in the quantum numbers, or (nx, ny, nz) = (2, 1, 1), (1, 2, 1), or (1, 1, 2).

Solution

The lowest energy level corresponds to the quantum numbers nx = ny = nz = 1. From Equation 9.28, the

energy of this level is

E(1, 1, 1) = π2 h2

2me L2 (12 + 12 + 12)

= 3π2 (1.05 × 10 − 34 J · s)2

2 (9.11 × 10−31 kg) (2.00 × 10−2 m)2

= 4.48 × 10−34 J = 2.80 × 10−15 eV.

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence, there
are actually three quantum states with the same energy. Suppose we increase nx by 1. Then the energy becomes
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9.4

E(2, 1, 1) = π2 h2

2me L2(22 + 12 + 12)

= 6π2 (1.05 × 10 − 34 J · s)2

2(9.11 × 10−31 kg)(2.00 × 10−2 m)2

= 8.96 × 10−34 J = 5.60 × 10−15 eV.

The energy spacing between the lowest energy state and the next-highest energy state is therefore

E(2, 1, 1) − E(1, 1, 1) = 2.80 × 10−15 eV.

Significance

This is a very small energy difference. Compare this value to the average kinetic energy of a particle, kB T ,

where kB is Boltzmann’s constant and T is the temperature. The product kB T is about 1000 times greater than

the energy spacing.

Check Your Understanding What happens to the ground state energy of an electron if the dimensions of
the solid increase?

Often, we are not interested in the total number of particles in all states, but rather the number of particles dN with energies
in a narrow energy interval. This value can be expressed by

dN = n(E)dE = g(E)dE · F

where n(E) is the electron number density, or the number of electrons per unit volume; g(E) is the density of states, or
the number of allowed quantum states per unit energy; dE is the size of the energy interval; and F is the Fermi factor.
The Fermi factor is the probability that the state will be filled. For example, if g(E)dE is 100 available states, but F is only
5% , then the number of particles in this narrow energy interval is only five. Finding g(E) requires solving Schrödinger’s

equation (in three dimensions) for the allowed energy levels. The calculation is involved even for a crude model, but the
result is simple:

(9.29)
g(E) = πV

2
⎛
⎝

8me
h2

⎞
⎠

3/2
E1/2,

where V is the volume of the solid, me is the mass of the electron, and E is the energy of the state. Notice that the density

of states increases with the square root of the energy. More states are available at high energy than at low energy. This
expression does not provide information of the density of the electrons in physical space, but rather the density of energy
levels in “energy space.” For example, in our study of the atomic structure, we learned that the energy levels of a hydrogen
atom are much more widely spaced for small energy values (near than ground state) than for larger values.

This equation tells us how many electron states are available in a three-dimensional metallic solid. However, it does not
tell us how likely these states will be filled. Thus, we need to determine the Fermi factor, F. Consider the simple case of

T = 0 K . From classical physics, we expect that all the electrons ( ∼ 1022 / cm3) would simply go into the ground state

to achieve the lowest possible energy. However, this violates Pauli’s exclusion principle, which states that no two electrons
can be in the same quantum state. Hence, when we begin filling the states with electrons, the states with lowest energy
become occupied first, then states with progressively higher energies. The last electron we put in has the highest energy.
This energy is the Fermi energy EF of the free electron gas. A state with energy E < EF is occupied by a single electron,

and a state with energy E > EF is unoccupied. To describe this in terms of a probability F(E) that a state of energy E is

occupied, we write for T = 0 K :

(9.30)F(E) = 1 (E < EF)
F(E) = 0 (E > EF).
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The density of states, Fermi factor, and electron number density are plotted against energy in Figure 9.12.

Figure 9.12 (a) Density of states for a free electron gas; (b) probability that a state is occupied at T = 0 K ; (c) density of

occupied states at T = 0 K .

A few notes are in order. First, the electron number density (last row) distribution drops off sharply at the Fermi energy.
According to the theory, this energy is given by

(9.31)
EF = h2

8me
⎛
⎝
3N
πV

⎞
⎠
2/3

.

Fermi energies for selected materials are listed in the following table.

Element Conduction Band Electron Density
⎛
⎝1028 m−3⎞

⎠

Free-Electron Model Fermi Energy
(eV)

Al 18.1 11.7

Ba 3.15 3.64

Cu 8.47 7.00

Au 5.90 5.53

Fe 17.0 11.1

Ag 5.86 5.49

Table 9.3 Conduction Electron Densities and Fermi Energies for Some Metals

Note also that only the graph in part (c) of the figure, which answers the question, “How many particles are found in the
energy range?” is checked by experiment. The Fermi temperature or effective “temperature” of an electron at the Fermi
energy is

(9.32)TF = EF
kB

.

Example 9.5

Fermi Energy of Silver

Metallic silver is an excellent conductor. It has 5.86 × 1028 conduction electrons per cubic meter. (a) Calculate

its Fermi energy. (b) Compare this energy to the thermal energy kB T of the electrons at a room temperature of

300 K.
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Solution
a. From Equation 9.31, the Fermi energy is

EF = h2

2me
(3π2 ne)2/3

= (1.05 × 10−34 J · s)2

2(9.11 × 10−31 kg)
× [(3π2 (5.86 × 1028 m−3)]2/3

= 8.79 × 10−19 J = 5.49 eV.

This is a typical value of the Fermi energy for metals, as can be seen from Table 9.3.

b. We can associate a Fermi temperature TF with the Fermi energy by writing kB TF = EF. We then find

for the Fermi temperature

TF = 8.79 × 10−19 J
1.38 × 10−23 J/K

= 6.37 × 104 K,

which is much higher than room temperature and also the typical melting point ( ∼ 103 K) of a metal.

The ratio of the Fermi energy of silver to the room-temperature thermal energy is

EF
kB T = TF

T ≈ 210.

To visualize how the quantum states are filled, we might imagine pouring water slowly into a glass, such as that of Figure
9.13. The first drops of water (the electrons) occupy the bottom of the glass (the states with lowest energy). As the level
rises, states of higher and higher energy are occupied. Furthermore, since the glass has a wide opening and a narrow stem,
more water occupies the top of the glass than the bottom. This reflects the fact that the density of states g(E) is proportional

to E1/2 , so there is a relatively large number of higher energy electrons in a free electron gas. Finally, the level to which

the glass is filled corresponds to the Fermi energy.

Figure 9.13 An analogy of how electrons fill energy states in a
metal. As electrons fill energy states, lowest to highest, the
number of available states increases. The highest energy state
(corresponding to the water line) is the Fermi energy. (credit:
modification of work by “Didriks”/Flickr)

Suppose that at T = 0 K , the number of conduction electrons per unit volume in our sample is ne . Since each field state
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has one electron, the number of filled states per unit volume is the same as the number of electrons per unit volume.

9.5 | Band Theory of Solids

Learning Objectives

By the end of this section, you will be able to:

• Describe two main approaches to determining the energy levels of an electron in a crystal

• Explain the presence of energy bands and gaps in the energy structure of a crystal

• Explain why some materials are good conductors and others are good insulators

• Differentiate between an insulator and a semiconductor

The free electron model explains many important properties of conductors but is weak in at least two areas. First, it assumes
a constant potential energy within the solid. (Recall that a constant potential energy is associated with no forces.) Figure
9.14 compares the assumption of a constant potential energy (dotted line) with the periodic Coulomb potential, which drops
as −1/r at each lattice point, where r is the distance from the ion core (solid line). Second, the free electron model assumes

an impenetrable barrier at the surface. This assumption is not valid, because under certain conditions, electrons can escape
the surface—such as in the photoelectric effect. In addition to these assumptions, the free electron model does not explain
the dramatic differences in electronic properties of conductors, semiconductors, and insulators. Therefore, a more complete
model is needed.

Figure 9.14 The periodic potential used to model electrons in a
conductor. Each ion in the solid is the source of a Coulomb potential.
Notice that the free electron model is productive because the average
of this field is approximately constant.

We can produce an improved model by solving Schrödinger’s equation for the periodic potential shown in Figure 9.14.
However, the solution requires technical mathematics far beyond our scope. We again seek a qualitative argument based on
quantum mechanics to find a way forward.

We first review the argument used to explain the energy structure of a covalent bond. Consider two identical hydrogen
atoms so far apart that there is no interaction whatsoever between them. Further suppose that the electron in each atom is
in the same ground state: a 1s electron with an energy of −13.6 eV (ignore spin). When the hydrogen atoms are brought

closer together, the individual wave functions of the electrons overlap and, by the exclusion principle, can no longer be in
the same quantum state, which splits the original equivalent energy levels into two different energy levels. The energies of
these levels depend on the interatomic distance, α (Figure 9.15).
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If four hydrogen atoms are brought together, four levels are formed from the four possible symmetries—a single sine wave
“hump” in each well, alternating up and down, and so on. In the limit of a very large number N of atoms, we expect a spread
of nearly continuous bands of electronic energy levels in a solid (see Figure 9.15(c)). Each of these bands is known as
an energy band. (The allowed states of energy and wave number are still technically quantized, but for large numbers of
atoms, these states are so close together that they are consider to be continuous or “in the continuum.”)

Energy bands differ in the number of electrons they hold. In the 1s and 2s energy bands, each energy level holds up to two
electrons (spin up and spin down), so this band has a maximum occupancy of 2N electrons. In the 2p energy band, each
energy level holds up to six electrons, so this band has a maximum occupancy of 6N electrons (Figure 9.16).

Figure 9.15 The dependence of energy-level splitting on the average distance between (a) two atoms, (b) four atoms, and (c) a
large number of atoms. For a large number of electrons, a continuous band of energies is produced.

Figure 9.16 A simple representation of the energy structure of
a solid. Electrons belong to energy bands separated by energy
gaps.

Each energy band is separated from the other by an energy gap. The electrical properties of conductors and insulators can
be understood in terms of energy bands and gaps. The highest energy band that is filled is known as a valence band. The
next available band in the energy structure is known as a conduction band. In a conductor, the highest energy band that
contains electrons is partially filled, whereas in an insulator, the highest energy band containing electrons is completely
filled. The difference between a conductor and insulator is illustrated in Figure 9.17.

A conductor differs from an insulator in how its electrons respond to an applied electric field. If a significant number of
electrons are set into motion by the field, the material is a conductor. In terms of the band model, electrons in the partially
filled conduction band gain kinetic energy from the electric field by filling higher energy states in the conduction band. By
contrast, in an insulator, electrons belong to completely filled bands. When the field is applied, the electrons cannot make
such transitions (acquire kinetic energy from the electric field) due to the exclusion principle. As a result, the material does
not conduct electricity.
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Figure 9.17 Comparison of a conductor and insulator. The highest energy band is partially filled in a conductor
but completely filled in an insulator.

Visit this simulation (https://openstaxcollege.org/l/21bandstructure) to learn about the origin of energy
bands in crystals of atoms and how the structure of bands determines how a material conducts electricity. Explore
how band structure creates a lattice of many wells.

A semiconductor has a similar energy structure to an insulator except it has a relatively small energy gap between the
lowest completely filled band and the next available unfilled band. This type of material forms the basis of modern
electronics. At T = 0 K , the semiconductor and insulator both have completely filled bands. The only difference is in the

size of the energy gap (or band gap) Eg between the highest energy band that is filled (the valence band) and the next-higher
empty band (the conduction band). In a semiconductor, this gap is small enough that a substantial number of electrons from
the valence band are thermally excited into the conduction band at room temperature. These electrons are then in a nearly
empty band and can respond to an applied field. As a general rule of thumb, the band gap of a semiconductor is about 1 eV.
(See Table 9.4 for silicon.) A band gap of greater than approximately 1 eV is considered an insulator. For comparison, the
energy gap of diamond (an insulator) is several electron-volts.

Material Energy Gap Eg (eV)

Si 1.14

Ge 0.67

GaAs 1.43

GaP 2.26

GaSb 0.69

InAs 0.35

InP 1.35

InSb 0.16

C (diamond) 5.48

Table 9.4 Energy Gap for Various
Materials at 300 K Note: Except for
diamond, the materials listed are all
semiconductors.
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9.6 | Semiconductors and Doping

Learning Objectives

By the end of this section, you will be able to:

• Describe changes to the energy structure of a semiconductor due to doping

• Distinguish between an n-type and p-type semiconductor

• Describe the Hall effect and explain its significance

• Calculate the charge, drift velocity, and charge carrier number density of a semiconductor using
information from a Hall effect experiment

In the preceding section, we considered only the contribution to the electric current due to electrons occupying states in the
conduction band. However, moving an electron from the valence band to the conduction band leaves an unoccupied state or
hole in the energy structure of the valence band, which a nearby electron can move into. As these holes are filled by other
electrons, new holes are created. The electric current associated with this filling can be viewed as the collective motion of
many negatively charged electrons or the motion of the positively charged electron holes.

To illustrate, consider the one-dimensional lattice in Figure 9.18. Assume that each lattice atom contributes one valence
electron to the current. As the hole on the right is filled, this hole moves to the left. The current can be interpreted as the flow
of positive charge to the left. The density of holes, or the number of holes per unit volume, is represented by p. Each electron
that transitions into the conduction band leaves behind a hole. If the conduction band is originally empty, the conduction
electron density p is equal to the hole density, that is, n = p .

Figure 9.18 The motion of holes in a crystal lattice. As
electrons shift to the right, an electron hole moves to the left.

As mentioned, a semiconductor is a material with a filled valence band, an unfilled conduction band, and a relatively small
energy gap between the bands. Excess electrons or holes can be introduced into the material by the substitution into the
crystal lattice of an impurity atom, which is an atom of a slightly different valence number. This process is known as
doping. For example, suppose we add an arsenic atom to a crystal of silicon (Figure 9.19(a)).
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Figure 9.19 (a) A donor impurity and (b) an acceptor impurity. The introduction to impurities and acceptors into a
semiconductor significantly changes the electronic properties of this material.

Arsenic has five valence electrons, whereas silicon has only four. This extra electron must therefore go into the conduction
band, since there is no room in the valence band. The arsenic ion left behind has a net positive charge that weakly binds the
delocalized electron. The binding is weak because the surrounding atomic lattice shields the ion’s electric field. As a result,
the binding energy of the extra electron is only about 0.02 eV. In other words, the energy level of the impurity electron is
in the band gap below the conduction band by 0.02 eV, a much smaller value than the energy of the gap, 1.14 eV. At room
temperature, this impurity electron is easily excited into the conduction band and therefore contributes to the conductivity
(Figure 9.20(a)). An impurity with an extra electron is known as a donor impurity, and the doped semiconductor is called
an n-type semiconductor because the primary carriers of charge (electrons) are negative.

Figure 9.20 (a) The extra electron from a donor impurity is excited into the conduction band; (b) formation of an impurity
band in an n-type semiconductor.

By adding more donor impurities, we can create an impurity band, a new energy band created by semiconductor doping, as
shown in Figure 9.20(b). The Fermi level is now between this band and the conduction band. At room temperature, many
impurity electrons are thermally excited into the conduction band and contribute to the conductivity. Conduction can then
also occur in the impurity band as vacancies are created there. Note that changes in the energy of an electron correspond to a
change in the motion (velocities or kinetic energy) of these charge carriers with the semiconductor, but not the bulk motion
of the semiconductor itself.

Doping can also be accomplished using impurity atoms that typically have one fewer valence electron than the
semiconductor atoms. For example, Al, which has three valence electrons, can be substituted for Si, as shown in Figure
9.19(b). Such an impurity is known as an acceptor impurity, and the doped semiconductor is called a p-type
semiconductor, because the primary carriers of charge (holes) are positive. If a hole is treated as a positive particle weakly
bound to the impurity site, then an empty electron state is created in the band gap just above the valence band. When this
state is filled by an electron thermally excited from the valence band (Figure 9.21(a)), a mobile hole is created in the
valence band. By adding more acceptor impurities, we can create an impurity band, as shown in Figure 9.21(b).
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Figure 9.21 (a) An electron from the conduction band is excited into the empty state resulting from the acceptor impurity; (b)
formation of an impurity band in a p-type semiconductor.

The electric current of a doped semiconductor can be due to the motion of a majority carrier, in which holes are
contributed by an impurity atom, or due to a minority carrier, in which holes are contributed purely by thermal excitations
of electrons across the energy gap. In an n-type semiconductor, majority carriers are free electrons contributed by impurity
atoms, and minority carriers are free electrons produced by thermal excitations from the valence to the conduction band. In
a p-type semiconductor, the majority carriers are free holes contributed by impurity atoms, and minority carriers are free
holes left by the filling of states due to thermal excitation of electrons across the gap. In general, the number of majority
carriers far exceeds the minority carriers. The concept of a majority and minority carriers will be used in the next section to
explain the operation of diodes and transistors.

In studying p- and n-type doping, it is natural to ask: Do “electron holes” really act like particles? The existence of
holes in a doped p-type semiconductor is demonstrated by the Hall effect. The Hall effect is the production of a potential
difference due to the motion of a conductor through an external magnetic field (see The Hall Effect (http://cnx.org/
content/m58744/latest/) ). A schematic of the Hall effect is shown in Figure 9.22(a). A semiconductor strip is bathed
in a uniform magnetic field (which points into the paper). As the electron holes move from left to right through the
semiconductor, a Lorentz force drives these charges toward the upper end of the strip. (Recall that the motion of the
positively charged carriers is determined by the right-hand rule.) Positive charge continues to collect on the upper edge
of the strip until the force associated with the downward electric field between the upper and lower edges of the strip
(FE = Eq) just balances the upward magnetic force (FB = qvB) . Setting these forces equal to each other, we have

E = vB . The voltage that develops across the strip is therefore

(9.33)VH = vBw,

where VH is the Hall voltage; v is the hole’s drift velocity, or average velocity of a particle that moves in a partially

random fashion; B is the magnetic field strength; and w is the width of the strip. Note that the Hall voltage is transverse
to the voltage that initially produces current through the material. A measurement of the sign of this voltage (or potential
difference) confirms the collection of holes on the top side of the strip. The magnitude of the Hall voltage yields the drift
velocity (v) of the majority carriers.

Additional information can also be extracted from the Hall voltage. Note that the electron current density (the amount of
current per unit cross-sectional area of the semiconductor strip) is

(9.34)j = nqv,

where q is the magnitude of the charge, n is the number of charge carriers per unit volume, and v is the drift velocity. The
current density is easily determined by dividing the total current by the cross-sectional area of the strip, q is charge of the
hole (the magnitude of the charge of a single electron), and u is determined by the Hall effect Equation 9.34. Hence, the
above expression for the electron current density gives the number of charge carriers per unit volume, n. A similar analysis
can be conducted for negatively charged carriers in an n-type material (see Figure 9.22).
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Figure 9.22 The Hall effect. (a) Positively charged electron holes are drawn to the left by a uniform magnetic field that
points downward. An electric field is generated to the right. (b) Negative charged electrons are drawn to the left by a
magnetic field that points up. An electric field is generated to the left.

9.7 | Semiconductor Devices

Learning Objectives

By the end of this section, you will be able to:

• Describe what occurs when n- and p-type materials are joined together using the concept of
diffusion and drift current (zero applied voltage)

• Explain the response of a p-n junction to a forward and reverse bias voltage

• Describe the function of a transistor in an electric circuit

• Use the concept of a p-n junction to explain its applications in audio amplifiers and computers

Semiconductors have many applications in modern electronics. We describe some basic semiconductor devices in this
section. A great advantage of using semiconductors for circuit elements is the fact that many thousands or millions of
semiconductor devices can be combined on the same tiny piece of silicon and connected by conducting paths. The resulting
structure is called an integrated circuit (ic), and ic chips are the basis of many modern devices, from computers and
smartphones to the internet and global communications networks.

Diodes
Perhaps the simplest device that can be created with a semiconductor is a diode. A diode is a circuit element that
allows electric current to flow in only one direction, like a one-way valve (see Model of Conduction in Metals
(http://cnx.org/content/m58730/latest/) ). A diode is created by joining a p-type semiconductor to an n-type
semiconductor (Figure 9.23). The junction between these materials is called a p-n junction. A comparison of the energy
bands of a silicon-based diode is shown in Figure 9.23(b). The positions of the valence and conduction bands are the same,
but the impurity levels are quite different. When a p-n junction is formed, electrons from the conduction band of the n-type
material diffuse to the p-side, where they combine with holes in the valence band. This migration of charge leaves positive
ionized donor ions on the n-side and negative ionized acceptor ions on the p-side, producing a narrow double layer of
charge at the p-n junction called the depletion layer. The electric field associated with the depletion layer prevents further
diffusion. The potential energy for electrons across the p-n junction is given by Figure 9.24.
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Figure 9.23 (a) Representation of a p-n junction. (b) A comparison of the energy bands of p-type and
n-type silicon prior to equilibrium.
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Figure 9.24 At equilibrium, (a) excess charge resides near the interface and the
net current is zero, and (b) the potential energy difference for electrons (in light
blue) prevents further diffusion of electrons into the p-side.

The behavior of a semiconductor diode can now be understood. If the positive side of the battery is connected to the n-type
material, the depletion layer is widened, and the potential energy difference across the p-n junction is increased. Few or
none of the electrons (holes) have enough energy to climb the potential barrier, and current is significantly reduced. This is
called the reverse bias configuration. On the other hand, if the positive side of a battery is connected to the p-type material,
the depletion layer is narrowed, the potential energy difference across the p-n junction is reduced, and electrons (holes) flow
easily. This is called the forward bias configuration of the diode. In sum, the diode allows current to flow freely in one
direction but prevents current flow in the opposite direction. In this sense, the semiconductor diode is a one-way valve.

We can estimate the mathematical relationship between the current and voltage for a diode using the electric potential
concept. Consider N negatively charged majority carriers (electrons donated by impurity atoms) in the n-type material and a
potential barrier V across the p-n junction. According to the Maxwell-Boltzmann distribution, the fraction of electrons that

have enough energy to diffuse across the potential barrier is Ne
−eV /kB T

. However, if a battery of voltage Vb is applied in

the forward-bias configuration, this fraction improves to Ne
−e⎛

⎝V − Vb
⎞
⎠/kB T

. The electric current due to the majority carriers

from the n-side to the p-side is therefore

(9.35)I = Ne
−eV /kB T

e
eVb /kB T

= I0 e
eVb /kB T

,

where I0 is the current with no applied voltage and T is the temperature. Current due to the minority carriers (thermal

excitation of electrons from the valence band to the conduction band on the p-side and subsequent attraction to the n-side)
is −I0 , independent of the bias voltage. The net current is therefore
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(9.36)Inet = I0
⎛
⎝e

eVb /kB T
− 1⎞

⎠.

A sample graph of the current versus bias voltage is given in Figure 9.25. In the forward bias configuration, small changes
in the bias voltage lead to large changes in the current. In the reverse bias configuration, the current is Inet ≈ −I0 . For

extreme values of reverse bias, the atoms in the material are ionized which triggers an avalanche of current. This case occurs
at the breakdown voltage.

Figure 9.25 Current versus voltage across a p-n junction (diode). In the
forward bias configuration, electric current flows easily. However, in the
reverse bias configuration, electric current flow very little.

Example 9.6

Diode Current

Attaching the positive end of a battery to the p-side and the negative end to the n-side of a semiconductor diode

produces a current of 4.5 × 10−1 A. The reverse saturation current is 2.2 × 10−8 A. (The reverse saturation

current is the current of a diode in a reverse bias configuration such as this.) The battery voltage is 0.12 V. What
is the diode temperature?

Strategy

The first arrangement is a forward bias configuration, and the second is the reverse bias configuration. In either
case, Equation 9.2 gives the current.

Solution

The current in the forward and reverse bias configurations is given by

Inet = I0
⎛
⎝e

eVb /kB T
− 1⎞

⎠.

The current with no bias is related to the reverse saturation current by

I0 ≈ − Isat = 2.2 × 10−8.

Therefore

Inet
I0

= 4.5 × 10−1 A
2.2 × 10−8 A

= 2.0 × 108.

Equation 9.2 can be written as
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9.5

Inet
I0

+ 1 = e
eVb /kB T

.

This ratio is much greater than one, so the second term on the left-hand side of the equation vanishes. Taking the
natural log of both sides gives

eVb
kB T = 19.

The temperature is therefore

T = eVb
kB

⎛
⎝

1
19

⎞
⎠ = e(0.12 V)

8.617 × 10−5 eV/K
⎛
⎝

1
19

⎞
⎠ = 73 K.

Significance

The current moving through a diode in the forward and reverse bias configuration is sensitive to the temperature
of the diode. If the potential energy supplied by the battery is large compared to the thermal energy of the diode’s
surroundings, kB T , then the forward bias current is very large compared to the reverse saturation current.

Check Your Understanding How does the magnitude of the forward bias current compare with the
reverse bias current?

Create a p-n junction and observe the behavior of a simple circuit for forward and reverse bias voltages. Visit this
site (https://openstaxcollege.org/l/21semiconductor) to learn more about semiconductor diodes.

Junction Transistor
If diodes are one-way valves, transistors are one-way valves that can be carefully opened and closed to control current. A
special kind of transistor is a junction transistor. A junction transistor has three parts, including an n-type semiconductor,
also called the emitter; a thin p-type semiconductor, which is the base; and another n-type semiconductor, called the
collector (Figure 9.26). When a positive terminal is connected to the p-type layer (the base), a small current of electrons,
called the base current IB, flows to the terminal. This causes a large collector current Ic to flow through the collector.

The base current can be adjusted to control the large collector current. The current gain is therefore

(9.37)Ic = βIB.
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Figure 9.26 A junction transistor has three parts: emitter, base,
and collector. Voltage applied to the base acts as a valve to control
electric current from the emitter to the collector.

A junction transistor can be used to amplify the voltage from a microphone to drive a loudspeaker. In this application, sound
waves cause a diaphragm inside the microphone to move in and out rapidly (Figure 9.27). When the diaphragm is in the
“in” position, a tiny positive voltage is applied to the base of the transistor. This opens the transistor “valve” and allows
a large electrical current flow to the loudspeaker. When the diaphragm is in the “out” position, a tiny negative voltage is
applied to the base of the transistor, which shuts off the transistor valve so that no current flows to the loudspeaker. This
shuts the transistor “valve” off so no current flows to the loudspeaker. In this way, current to the speaker is controlled by the
sound waves, and the sound is amplified. Any electric device that amplifies a signal is called an amplifier.

Figure 9.27 An audio amplifier based on a junction transistor. Voltage applied to the base by a microphone acts as a
valve to control a larger electric current that passes through a loudspeaker.
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In modern electronic devices, digital signals are used with diodes and transistors to perform tasks such as data manipulation.
Electric circuits carry two types of electrical signals: analog and digital (Figure 9.28). An analog signal varies
continuously, whereas a digital signal switches between two fixed voltage values, such as plus 1 volt and zero volts. In
digital circuits like those found in computers, a transistor behaves like an on-off switch. The transistor is either on, meaning
the valve is completely open, or it is off, meaning the valve is completely closed. Integrated circuits contain vast collections
of transistors on a single piece of silicon. They are designed to handle digital signals that represent ones and zeroes, which
is also known as binary code. The invention of the ic helped to launch the modern computer revolution.

Figure 9.28 Real-world data are often analog, meaning data can vary continuously.
Intensity values of sound or visual images are usually analog. These data are converted
into digital signals for electronic processing in recording devices or computers. The
digital signal is generated from the analog signal by requiring certain voltage cut-off
value.

9.8 | Superconductivity

Learning Objectives

By the end of this section, you will be able to:

• Describe the main features of a superconductor

• Describe the BCS theory of superconductivity

• Determine the critical magnetic field for T = 0 K from magnetic field data

• Calculate the maximum emf or current for a wire to remain superconducting

Electrical resistance can be considered as a measure of the frictional force in electrical current flow. Thus, electrical
resistance is a primary source of energy dissipation in electrical systems such as electromagnets, electric motors, and
transmission lines. Copper wire is commonly used in electrical wiring because it has one of the lowest room-temperature
electrical resistivities among common conductors. (Actually, silver has a lower resistivity than copper, but the high cost and
limited availability of silver outweigh its savings in energy over copper.)

Although our discussion of conductivity seems to imply that all materials must have electrical resistance, we know that this
is not the case. When the temperature decreases below a critical value for many materials, their electrical resistivity drops
to zero, and the materials become superconductors (see Superconductors (http://cnx.org/content/m58735/latest/)
).

Watch this NOVA video (https://openstaxcollege.org/l/21NOVA) excerpt, Making Stuff Colder, as an
introduction to the topic of superconductivity and its many applications.

Properties of Superconductors
In addition to zero electrical resistance, superconductors also have perfect diamagnetism. In other words, in the presence
of an applied magnetic field, the net magnetic field within a superconductor is always zero (Figure 9.29). Therefore,
any magnetic field lines that pass through a superconducting sample when it is in its normal state are expelled once the
sample becomes superconducting. These are manifestations of the Meissner effect, which you learned about in the chapter
on current and resistance.
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Figure 9.29 (a) In the Meissner effect, a magnetic field is expelled from a material once it becomes
superconducting. (b) A magnet can levitate above a superconducting material, supported by the force expelling the
magnetic field. (credit b: modification of work by Kevin Jarrett)

Interestingly, the Meissner effect is not a consequence of the resistance being zero. To see why, suppose that a sample placed
in a magnetic field undergoes a transition in which its resistance drops to zero. From Ohm’s law, the current density, j, in
the sample is related to the net internal electric field, E, and the resistivity ρ by j = E/ρ . If ρ is zero, E must also be zero

so that j can remain finite. Now E and the magnetic flux Φm through the sample are related by Faraday’s law as

(9.38)∮ EdI = − dΦm
dt .

If E is zero, dΦm/dt is also zero, that is, the magnetic flux through the sample cannot change. The magnetic field lines

within the sample should therefore not be expelled when the transition occurs. Hence, it does not follow that a material
whose resistance goes to zero has to exhibit the Meissner effect. Rather, the Meissner effect is a special property of
superconductors.

Another important property of a superconducting material is its critical temperature, Tc , the temperature below which

the material is superconducting. The known range of critical temperatures is from a fraction of 1 K to slightly above
100 K. Superconductors with critical temperatures near this higher limit are commonly known as “high-temperature”
superconductors. From a practical standpoint, superconductors for which Tc ≫ 77 K are very important. At present,

applications involving superconductors often still require that superconducting materials be immersed in liquid helium
(4.2 K) in order to keep them below their critical temperature. The liquid helium baths must be continually replenished
because of evaporation, and cooling costs can easily outweigh the savings in using a superconductor. However, 77 K is the
temperature of liquid nitrogen, which is far more abundant and inexpensive than liquid helium. It would be much more
cost-effective if we could easily fabricate and use high-temperature superconductor components that only need to be kept
in liquid nitrogen baths to maintain their superconductivity.

High-temperature superconducting materials are presently in use in various applications. An example is the production
of magnetic fields in some particle accelerators. The ultimate goal is to discover materials that are superconducting at
room temperature. Without any cooling requirements, the bulk of electronic components and transmission lines could be
superconducting, resulting in dramatic and unprecedented increases in efficiency and performance.

Another important property of a superconducting material is its critical magnetic field Bc(T), which is the maximum

applied magnetic field at a temperature T that will allow a material to remain superconducting. An applied field that is
greater than the critical field will destroy the superconductivity. The critical field is zero at the critical temperature and
increases as the temperature decreases. Plots of the critical field versus temperature for several superconducting materials
are shown in Figure 9.30. The temperature dependence of the critical field can be described approximately by
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(9.39)
Bc (T) = Bc (0)

⎡

⎣
⎢1 − ⎛

⎝
T
Tc

⎞
⎠

2⎤

⎦
⎥

where Bc(0) is the critical field at absolute zero temperature. Table 9.5 lists the critical temperatures and fields for two

classes of superconductors: type I superconductor and type II superconductor. In general, type I superconductors are
elements, such as aluminum and mercury. They are perfectly diamagnetic below a critical field BC(T), and enter the normal
non-superconducting state once that field is exceeded. The critical fields of type I superconductors are generally quite low
(well below one tesla). For this reason, they cannot be used in applications requiring the production of high magnetic fields,
which would destroy their superconducting state.

Figure 9.30 The temperature dependence of the critical field
for several superconductors. Superconductivity occurs for
magnetic fields and temperatures below the curves shown.

Material Critical Temperature (K) Critical Magnetic Field (T)

Type I

Al 1.2 0.011

Ga 1.1 0.0051

Hg(α) 4.2 0.041

In 3.4 0.029

Nb 9.3 0.20

Pb 7.2 0.080

Sn 3.7 0.031

Th 1.4 0.00016

Zn 0.87 0.0053

Table 9.5 Critical Temperature and Critical Magnetic Field at T = 0 K for

Various Superconductors
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Material Critical Temperature (K) Critical Magnetic Field (T)

Type II

Nb3 Al 18 32

Nb3 Ge 23 38

Nb3 Sn 18 25

NbTi 9.3 15

YBa2 Cu3 O7 92 >100

Table 9.5 Critical Temperature and Critical Magnetic Field at T = 0 K for

Various Superconductors

Type II superconductors are generally compounds or alloys involving transition metals or actinide series elements. Almost
all superconductors with relatively high critical temperatures are type II. They have two critical fields, represented by
Bc1(T) and Bc2(T) . When the field is below Bc1(T), type II superconductors are perfectly diamagnetic, and no magnetic

flux penetration into the material can occur. For a field exceeding Bc2(T), they are driven into their normal state.

When the field is greater than Bc1(T) but less than Bc2(T), type II superconductors are said to be in a mixed state.

Although there is some magnetic flux penetration in the mixed state, the resistance of the material is zero. Within the
superconductor, filament-like regions exist that have normal electrical and magnetic properties interspersed between regions
that are superconducting with perfect diamagnetism. A representation of this state is given in Figure 9.31. The magnetic
field is expelled from the superconducting regions but exists in the normal regions. In general, Bc2(T) is very large

compared with the critical fields of type I superconductors, so wire made of type II superconducting material is suitable for
the windings of high-field magnets.

Figure 9.31 A schematic representation of the mixed state of
a type II superconductor. Superconductors (the gray squares)
expel magnetic fields in their vicinity.
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9.6

Example 9.7

Niobium Wire

In an experiment, a niobium (Nb) wire of radius 0.25 mm is immersed in liquid helium ( T = 4.2 K ) and required

to carry a current of 300 A. Does the wire remain superconducting?

Strategy

The applied magnetic field can be determined from the radius of the wire and current. The critical magnetic field
can be determined from Equation 9.1, the properties of the superconductor, and the temperature. If the applied
magnetic field is greater than the critical field, then superconductivity in the Nb wire is destroyed.

Solution

At T = 4.2 K, the critical field for Nb is, from Equation 9.1 and Table 9.5,

Bc(4.2 K) = Bc(0)
⎡

⎣
⎢1 − ⎛

⎝
4.2 K
9.3 K

⎞
⎠

2⎤

⎦
⎥ = (0.20 T)(0.80) = 0.16 T.

In an earlier chapter, we learned the magnetic field inside a current-carrying wire of radius a is given by

B = µ0 I
2πa ,

where r is the distance from the central axis of the wire. Thus, the field at the surface of the wire is
µ0 Ir
2πa . For

the niobium wire, this field is

B = (4π × 10−7 T m/A)(300 A)
2π⎛

⎝2.5 × 10−4 m⎞
⎠

= 0.24 T.

Since this exceeds the critical 0.16 T, the wire does not remain superconducting.

Significance

Superconductivity requires low temperatures and low magnetic fields. These simultaneous conditions are met less
easily for Nb than for many other metals. For example, aluminum superconducts at temperatures 7 times lower
and magnetic fields 18 times lower.

Check Your Understanding What conditions are necessary for superconductivity?

Theory of Superconductors
A successful theory of superconductivity was developed in the 1950s by John Bardeen, Leon Cooper, and J. Robert
Schrieffer, for which they received the Nobel Prize in 1972. This theory is known as the BCS theory. BCS theory is
complex, so we summarize it qualitatively below.

In a normal conductor, the electrical properties of the material are due to the most energetic electrons near the Fermi energy.
In 1956, Cooper showed that if there is any attractive interaction between two electrons at the Fermi level, then the electrons
can form a bound state in which their total energy is less than 2EF . Two such electrons are known as a Cooper pair.

It is hard to imagine two electrons attracting each other, since they have like charge and should repel. However, the proposed
interaction occurs only in the context of an atomic lattice. A depiction of the attraction is shown in Figure 9.32. Electron
1 slightly displaces the positively charged atomic nuclei toward itself as it travels past because of the Coulomb attraction.
Electron 2 “sees” a region with a higher density of positive charge relative to the surroundings and is therefore attracted into
this region and, therefore indirectly, to electron 1. Because of the exclusion principle, the two electrons of a Cooper pair
must have opposite spin.
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Figure 9.32 A Cooper pair can form as a result of the
displacement of positive atomic nuclei. Electron 1 slightly
displaces the positively charged atomic nuclei toward itself as it
travels past because of the Coulomb attraction. Electron 2 “sees”
a region with a higher density of positive charge relative to the
surroundings and is therefore attracted into this region.

The BCS theory extends Cooper’s ideas, which are for a single pair of electrons, to the entire free electron gas. When the
transition to the superconducting state occurs, all the electrons pair up to form Cooper pairs. On an atomic scale, the distance

between the two electrons making up a Cooper pair is quite large. Between these electrons are typically about 106 other

electrons, each also pairs with a distant electron. Hence, there is considerable overlap between the wave functions of the
individual Cooper pairs, resulting in a strong correlation among the motions of the pairs. They all move together “in step,”
like the members of a marching band. In the superconducting transition, the density of states becomes drastically changed
near the Fermi level. As shown in Figure 9.33, an energy gap appears around EF because the collection of Cooper pairs

has lower ground state energy than the Fermi gas of noninteracting electrons. The appearance of this gap characterizes the
superconducting state. If this state is destroyed, then the gap disappears, and the density of states reverts to that of the free
electron gas.

Figure 9.33 A relatively large energy gap is formed around
the Fermi energy when a material becomes superconducting. If
this state is destroyed, then the gap disappears, and the density
of states reverts to that of the free electron gas.
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The BCS theory is able to predict many of the properties observed in superconductors. Examples include the Meissner
effect, the critical temperature, the critical field, and, perhaps most importantly, the resistivity becoming zero at a critical
temperature. We can think about this last phenomenon qualitatively as follows. In a normal conductor, resistivity results
from the interaction of the conduction electrons with the lattice. In this interaction, the energy exchanged is on the order
of kB T , the thermal energy. In a superconductor, electric current is carried by the Cooper pairs. The only way for a

lattice to scatter a Cooper pair is to break it up. The destruction of one pair then destroys the collective motion of all the

pairs. This destruction requires energy on the order of 10−3 eV , which is the size of the energy gap. Below the critical

temperature, there is not enough thermal energy available for this process, so the Cooper pairs travel unimpeded throughout
the superconductor.

Finally, it is interesting to note that no evidence of superconductivity has been found in the best normal conductors, such as
copper and silver. This is not unexpected, given the BCS theory. The basis for the formation of the superconducting state
is an interaction between the electrons and the lattice. In the best conductors, the electron-lattice interaction is weakest, as
evident from their minimal resistivity. We might expect then that in these materials, the interaction is so weak that Cooper
pairs cannot be formed, and superconductivity is therefore precluded.
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acceptor impurity

amplifier

base current

BCS theory

body-centered cubic (BCC)

breakdown voltage

collector current

conduction band

Cooper pair

covalent bond

critical magnetic field

critical temperature

density of states

depletion layer

dissociation energy

donor impurity

doping

drift velocity

electric dipole transition

electron affinity

electron number density

energy band

energy gap

equilibrium separation distance

exchange symmetry

face-centered cubic (FCC)

Fermi energy

Fermi factor

Fermi temperature

forward bias configuration

free electron model

hole

hybridization

CHAPTER 9 REVIEW

KEY TERMS
atom substituted for another in a semiconductor that results in a free electron

electrical device that amplifies an electric signal

current drawn from the base n-type material in a transistor

theory of superconductivity based on electron-lattice-electron interactions

crystal structure in which an ion is surrounded by eight nearest neighbors located at the
corners of a unit cell

in a diode, the reverse bias voltage needed to cause an avalanche of current

current drawn from the collector p-type material

above the valence band, the next available band in the energy structure of a crystal

coupled electron pair in a superconductor

bond formed by the sharing of one or more electrons between atoms

maximum field required to produce superconductivity

maximum temperature to produce superconductivity

number of allowed quantum states per unit energy

region near the p-n junction that produces an electric field

amount of energy needed to break apart a molecule into atoms; also, total energy per ion pair to
separate the crystal into isolated ions

atom substituted for another in a semiconductor that results in a free electron hole

alteration of a semiconductor by the substitution of one type of atom with another

average velocity of a randomly moving particle

transition between energy levels brought by the absorption or emission of radiation

energy associated with an accepted (bound) electron

number of electrons per unit volume

nearly continuous band of electronic energy levels in a solid

gap between energy bands in a solid

distance between atoms in a molecule

how a total wave function changes under the exchange of two electrons

crystal structure in which an ion is surrounded by six nearest neighbors located at the faces
at the faces of a unit cell

largest energy filled by electrons in a metal at T = 0 K

number that expresses the probability that a state of given energy will be filled

effective temperature of electrons with energies equal to the Fermi energy

diode configuration that results in high current

model of a metal that views electrons as a gas

unoccupied states in an energy band

change in the energy structure of an atom in which energetically favorable mixed states participate in
bonding
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impurity atom

impurity band

ionic bond

junction transistor

lattice

Madelung constant

majority carrier

minority carrier

n-type semiconductor

p-n junction

p-type semiconductor

polyatomic molecule

repulsion constant

reverse bias configuration

rotational energy level

selection rule

semiconductor

simple cubic

type I superconductor

type II superconductor

valence band

van der Waals bond

vibrational energy level

acceptor or donor impurity atom

new energy band create by semiconductor doping

bond formed by the Coulomb attraction of a positive and negative ions

electrical valve based on a p-n-p junction

regular array or arrangement of atoms into a crystal structure

constant that depends on the geometry of a crystal used to determine the total potential energy of
an ion in a crystal

free electrons (or holes) contributed by impurity atoms

free electrons (or holes) produced by thermal excitations across the energy gap

doped semiconductor that conducts electrons

junction formed by joining p- and n-type semiconductors

doped semiconductor that conducts holes

molecule formed of more than one atom

experimental parameter associated with a repulsive force between ions brought so close together
that the exclusion principle is important

diode configuration that results in low current

energy level associated with the rotational energy of a molecule

rule that limits the possible transitions from one quantum state to another

solid with a relatively small energy gap between the lowest completely filled band and the next
available unfilled band

basic crystal structure in which each ion is located at the nodes of a three-dimensional grid

superconducting element, such as aluminum or mercury

superconducting compound or alloy, such as a transition metal or an actinide series element

highest energy band that is filled in the energy structure of a crystal

bond formed by the attraction of two electrically polarized molecules

energy level associated with the vibrational energy of a molecule

KEY EQUATIONS
Electrostatic energy for equilibrium separation distance between atoms Ucoul = − ke2

r0

Energy change associated with ionic bonding Uform = Etransfer + Ucoul + Uex

Critical magnetic field of a superconductor
Bc (T) = Bc (0)

⎡

⎣
⎢1 − ⎛

⎝
T
Tc

⎞
⎠

2⎤

⎦
⎥

Rotational energy of a diatomic molecule Er = l(l + 1)ℏ2

2I

Characteristic rotational energy of a molecule E0r = ℏ2

2I

Potential energy associated with the exclusion principle Uex = A
rn

Dissociation energy of a solid Udiss = αke2
r0

⎛
⎝1 − 1

n
⎞
⎠
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Moment of inertia of a diatomic molecule with reduced mass µ I = µr0
2

Electron energy in a metal E = π2 ℏ2

2mL2
⎛
⎝n1

2 + n2
2 + n3

2⎞
⎠

Electron density of states of a metal
g(E) = πV

2
⎛
⎝

8me
h2

⎞
⎠

3/2
E1/2

Fermi energy
EF = h2

8me
⎛
⎝
3N
πV

⎞
⎠
2/3

Fermi temperature TF = EF
kB

Hall effect VH = uBw

Current versus bias voltage across p-n junction Inet = I0
⎛
⎝e

eVb /kB T
− 1⎞

⎠

Current gain Ic = βIB

Selection rule for rotational energy transitions Δl = ± 1

Selection rule for vibrational energy transitions Δn = ± 1

SUMMARY

9.1 Types of Molecular Bonds

• Molecules form by two main types of bonds: the ionic bond and the covalent bond. An ionic bond transfers an
electron from one atom to another, and a covalent bond shares the electrons.

• The energy change associated with ionic bonding depends on three main processes: the ionization of an electron
from one atom, the acceptance of the electron by the second atom, and the Coulomb attraction of the resulting ions.

• Covalent bonds involve space-symmetric wave functions.

• Atoms use a linear combination of wave functions in bonding with other molecules (hybridization).

9.2 Molecular Spectra

• Molecules possess vibrational and rotational energy.

• Energy differences between adjacent vibrational energy levels are larger than those between rotational energy levels.

• Separation between peaks in an absorption spectrum is inversely related to the moment of inertia.

• Transitions between vibrational and rotational energy levels follow selection rules.

9.3 Bonding in Crystalline Solids

• Packing structures of common ionic salts include FCC and BCC.

• The density of a crystal is inversely related to the equilibrium constant.

• The dissociation energy of a salt is large when the equilibrium separation distance is small.

• The densities and equilibrium radii for common salts (FCC) are nearly the same.

9.4 Free Electron Model of Metals

• Metals conduct electricity, and electricity is composed of large numbers of randomly colliding and approximately
free electrons.
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• The allowed energy states of an electron are quantized. This quantization appears in the form of very large electron
energies, even at T = 0 K .

• The allowed energies of free electrons in a metal depend on electron mass and on the electron number density of the
metal.

• The density of states of an electron in a metal increases with energy, because there are more ways for an electron to
fill a high-energy state than a low-energy state.

• Pauli’s exclusion principle states that only two electrons (spin up and spin down) can occupy the same energy level.
Therefore, in filling these energy levels (lowest to highest at T = 0 K), the last and largest energy level to be

occupied is called the Fermi energy.

9.5 Band Theory of Solids

• The energy levels of an electron in a crystal can be determined by solving Schrödinger’s equation for a periodic
potential and by studying changes to the electron energy structure as atoms are pushed together from a distance.

• The energy structure of a crystal is characterized by continuous energy bands and energy gaps.

• The ability of a solid to conduct electricity relies on the energy structure of the solid.

9.6 Semiconductors and Doping

• The energy structure of a semiconductor can be altered by substituting one type of atom with another (doping).

• Semiconductor n-type doping creates and fills new energy levels just below the conduction band.

• Semiconductor p-type doping creates new energy levels just above the valence band.

• The Hall effect can be used to determine charge, drift velocity, and charge carrier number density of a
semiconductor.

9.7 Semiconductor Devices

• A diode is produced by an n-p junction. A diode allows current to move in just one direction. In forward biased
configuration of a diode, the current increases exponentially with the voltage.

• A transistor is produced by an n-p-n junction. A transistor is an electric valve that controls the current in a circuit.

• A transistor is a critical component in audio amplifiers, computers, and many other devices.

9.8 Superconductivity

• A superconductor is characterized by two features: the conduction of electrons with zero electrical resistance and
the repelling of magnetic field lines.

• A minimum temperature is required for superconductivity to occur.

• A strong magnetic field destroys superconductivity.

• Superconductivity can be explain in terms of Cooper pairs.

CONCEPTUAL QUESTIONS

9.1 Types of Molecular Bonds

1. What is the main difference between an ionic bond, a
covalent bond, and a van der Waals bond?

2. For the following cases, what type of bonding is
expected? (a) KCl molecule; (b) N2 molecule.

3. Describe three steps to ionic bonding.

4. What prevents a positive and negative ion from having
a zero separation?

5. For the H2 molecule, why must the spins the electron

spins be antiparallel?

9.2 Molecular Spectra

6. Does the absorption spectrum of the diatomic molecule
HCl depend on the isotope of chlorine contained in the
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molecule? Explain your reasoning.

7. Rank the energy spacing (ΔE) of the following

transitions from least to greatest: an electron energy
transition in an atom (atomic energy), the rotational energy
of a molecule, or the vibrational energy of a molecule?

8. Explain key features of a vibrational-rotation energy
spectrum of the diatomic molecule.

9.3 Bonding in Crystalline Solids

9. Why is the equilibrium separation distance between

K+ and Cl− different for a diatomic molecule than for

solid KCl?

10. Describe the difference between a face-centered cubic
structure (FCC) and a body-centered cubic structure
(BCC).

11. In sodium chloride, how many Cl– atoms are “nearest

neighbors” of Na+ ? How many Na+ atoms are “nearest

neighbors” of Cl− ?

12. In cesium iodide, how many Cl− atoms are “nearest

neighbors” of Cs+ ? How many Cs+ atoms are “nearest

neighbors” of Cl− ?

13. The NaCl crystal structure is FCC. The equilibrium
spacing is r0 = 0.282 nm . If each ion occupies a cubic

volume of r0
3 , estimate the distance between “nearest

neighbor” Na+ ions (center-to-center)?

9.4 Free Electron Model of Metals

14. Why does the Fermi energy (EF) increase with the

number of electrons in a metal?

15. If the electron number density (N/V) of a metal
increases by a factor 8, what happens to the Fermi energy
(EF)?

16. Why does the horizontal line in the graph in Figure
9.12 suddenly stop at the Fermi energy?

17. Why does the graph in Figure 9.12 increase
gradually from the origin?

18. Why are the sharp transitions at the Fermi energy
“smoothed out” by increasing the temperature?

9.5 Band Theory of Solids

19. What are the two main approaches used to determine
the energy levels of electrons in a crystal?

20. Describe two features of energy levels for an electron
in a crystal.

21. How does the number of energy levels in a band
correspond to the number, N, of atoms.

22. Why are some materials very good conductors and
others very poor conductors?

23. Why are some materials semiconductors?

24. Why does the resistance of a semiconductor decrease
as the temperature increases?

9.6 Semiconductors and Doping

25. What kind of semiconductor is produced if germanium
is doped with (a) arsenic, and (b) gallium?

26. What kind of semiconductor is produced if silicon is
doped with (a) phosphorus, and (b) indium?

27. What is the Hall effect and what is it used for?

28. For an n-type semiconductor, how do impurity atoms
alter the energy structure of the solid?

29. For a p-type semiconductor, how do impurity atoms
alter the energy structure of the solid?

9.7 Semiconductor Devices

30. When p- and n-type materials are joined, why is a
uniform electric field generated near the junction?

31. When p- and n-type materials are joined, why does the
depletion layer not grow indefinitely?

32. How do you know if a diode is in the forward biased
configuration?

33. Why does the reverse bias configuration lead to a very
small current?

34. What happens in the extreme case that where the n-
and p-type materials are heavily doped?

35. Explain how an audio amplifier works, using the
transistor concept.
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9.8 Superconductivity

36. Describe two main features of a superconductor.

37. How does BCS theory explain superconductivity?

38. What is the Meissner effect?

39. What impact does an increasing magnetic field have
on the critical temperature of a semiconductor?

PROBLEMS

9.1 Types of Molecular Bonds

40. The electron configuration of carbon is 1s2 2s2 2p2.
Given this electron configuration, what other element
might exhibit the same type of hybridization as carbon?

41. Potassium chloride (KCl) is a molecule formed by
an ionic bond. At equilibrium separation the atoms are
r0 = 0.279 nm apart. Determine the electrostatic potential

energy of the atoms.

42. The electron affinity of Cl is 3.89 eV and the
ionization energy of K is 4.34 eV. Use the preceding
problem to find the dissociation energy. (Neglect the energy
of repulsion.)

43. The measured energy dissociated energy of KCl is
4.43 eV. Use the results of the preceding problem to
determine the energy of repulsion of the ions due to the
exclusion principle.

9.2 Molecular Spectra

44. In a physics lab, you measure the vibrational-
rotational spectrum of HCl. The estimated separation

between absorption peaks is Δ f ≈ 5.5 × 1011 Hz . The

central frequency of the band is f0 = 9.0 × 1013 Hz . (a)

What is the moment of inertia (I)? (b) What is the energy of
vibration for the molecule?

45. For the preceding problem, find the equilibrium
separation of the H and Cl atoms. Compare this with the
actual value.

46. The separation between oxygen atoms in an O2

molecule is about 0.121 nm. Determine the characteristic
energy of rotation in eV.

47. The characteristic energy of the N2 molecule is

2.48 × 10−4 eV . Determine the separation distance

between the nitrogen atoms

48. The characteristic energy for KCl is 1.4 × 10−5 eV.

(a) Determine µ for the KCl molecule. (b) Find the

separation distance between the K and Cl atoms.

49. A diatomic F2 molecule is in the l = 1 state. (a)

What is the energy of the molecule? (b) How much energy
is radiated in a transition from a l = 2 to a l = 1 state?

50. In a physics lab, you measure the vibrational-
rotational spectrum of potassium bromide (KBr). The
estimated separation between absorption peaks is

Δ f ≈ 5.35 × 1010 Hz . The central frequency of the band

is f0 = 8.75 × 1012 Hz . (a) What is the moment of inertia

(I)? (b) What is the energy of vibration for the molecule?

9.3 Bonding in Crystalline Solids

51. The CsI crystal structure is BCC. The equilibrium

spacing is approximately r0 = 0.46 nm . If Cs+ ion

occupies a cubic volume of r0
3 , what is the distance of this

ion to its “nearest neighbor” I+ ion?

52. The potential energy of a crystal is −8.10 eV /ion

pair. Find the dissociation energy for four moles of the
crystal.

53. The measured density of a NaF crystal is

2.558 g/cm3 . What is the equilibrium separate distance of

Na+ and Fl− ions?

54. What value of the repulsion constant, n, gives the
measured dissociation energy of 221 kcal/mole for NaF?

55. Determine the dissociation energy of 12 moles of
sodium chloride (NaCl). (Hint: the repulsion constant n is
approximately 8.)

56. The measured density of a KCl crystal is

1.984 g/cm3. What is the equilibrium separation distance

of K+ and Cl− ions?

57. What value of the repulsion constant, n, gives the
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measured dissociation energy of 171 kcal/mol for KCl?

58. The measured density of a CsCl crystal is

3.988 g/cm3 . What is the equilibrium separate distance of

Cs+ and Cl− ions?

9.4 Free Electron Model of Metals

59. What is the difference in energy between the
nx = ny = nz = 4 state and the state with the next higher

energy? What is the percentage change in the energy
between the nx = ny = nz = 4 state and the state with the

next higher energy? (b) Compare these with the difference
in energy and the percentage change in the energy between
the nx = ny = nz = 400 state and the state with the next

higher energy.

60. An electron is confined to a metal cube of l = 0.8 cm
on each side. Determine the density of states at (a)
E = 0.80 eV ; (b) E = 2.2 eV ; and (c) E = 5.0 eV .

61. What value of energy corresponds to a density of

states of 1.10 × 1024 eV−1 ?

62. Compare the density of states at 2.5 eV and 0.25 eV.

63. Consider a cube of copper with edges 1.50 mm long.
Estimate the number of electron quantum states in this cube
whose energies are in the range 3.75 to 3.77 eV.

64. If there is one free electron per atom of copper, what
is the electron number density of this metal?

65. Determine the Fermi energy and temperature for
copper at T = 0 K .

9.5 Band Theory of Solids

66. For a one-dimensional crystal, write the lattice spacing
(a) in terms of the electron wavelength.

67. What is the main difference between an insulator and
a semiconductor?

68. What is the longest wavelength for a photon that can
excite a valence electron into the conduction band across an
energy gap of 0.80 eV?

69. A valence electron in a crystal absorbs a photon of
wavelength, λ = 0.300 nm . This is just enough energy to

allow the electron to jump from the valence band to the
conduction band. What is the size of the energy gap?

9.6 Semiconductors and Doping

70. An experiment is performed to demonstrate the Hall
effect. A thin rectangular strip of semiconductor with width
10 cm and length 30 cm is attached to a battery and
immersed in a 1.50-T field perpendicular to its surface. This
produced a Hall voltage of 12 V. What is the drift velocity
of the charge carriers?

71. Suppose that the cross-sectional area of the strip (the
area of the face perpendicular to the electric current)

presented to the in the preceding problem is 1 mm2 and

the current is independently measured to be 2 mA. What is
the number density of the charge carriers?

72. A current-carrying copper wire with cross-section

σ = 2 mm2 has a drift velocity of 0.02 cm/s. Find the total

current running through the wire.

73. The Hall effect is demonstrated in the laboratory. A
thin rectangular strip of semiconductor with width 5 cm and

cross-sectional area 2 mm2 is attached to a battery and

immersed in a field perpendicular to its surface. The Hall
voltage reads 12.5 V and the measured drift velocity is 50
m/s. What is the magnetic field?

9.7 Semiconductor Devices

74. Show that for V less than zero, Inet ≈ −I0.

75. A p-n diode has a reverse saturation current

1.44 × 10−8 A . It is forward biased so that it has a current

of 6.78 × 10−1 A moving through it. What bias voltage is

being applied if the temperature is 300 K?

76. The collector current of a transistor is 3.4 A for a base
current of 4.2 mA. What is the current gain?

77. Applying the positive end of a battery to the p-side
and the negative end to the n-side of a p-n junction, the

measured current is 8.76 × 10−1 A . Reversing this

polarity give a reverse saturation current of

4.41 × 10−8 A . What is the temperature if the bias

voltage is 1.2 V?

78. The base current of a transistor is 4.4 A, and its current
gain 1126. What is the collector current?

9.8 Superconductivity

79. At what temperature, in terms of TC , is the critical

field of a superconductor one-half its value at T = 0 K ?
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80. What is the critical magnetic field for lead at
T = 2.8 K ?

81. A Pb wire wound in a tight solenoid of diameter of
4.0 mm is cooled to a temperature of 5.0 K. The wire is
connected in series with a 50-Ω resistor and a variable

source of emf. As the emf is increased, what value does it

have when the superconductivity of the wire is destroyed?

82. A tightly wound solenoid at 4.0 K is 50 cm long
and is constructed from Nb wire of radius 1.5 mm. What
maximum current can the solenoid carry if the wire is to
remain superconducting?

ADDITIONAL PROBLEMS

83. Potassium fluoride (KF) is a molecule formed by an
ionic bond. At equilibrium separation the atoms are
r0 = 0.255 nm apart. Determine the electrostatic potential

energy of the atoms. The electron affinity of F is 3.40
eV and the ionization energy of K is 4.34 eV. Determine
dissociation energy. (Neglect the energy of repulsion.)

84. For the preceding problem, sketch the potential energy

versus separation graph for the bonding of K+ and Fl−

ions. (a) Label the graph with the energy required to
transfer an electron from K to Fl. (b) Label the graph with
the dissociation energy.

85. The separation between hydrogen atoms in a H2

molecule is about 0.075 nm. Determine the characteristic
energy of rotation in eV.

86. The characteristic energy of the Cl2 molecule is

2.95 × 10−5 eV . Determine the separation distance

between the nitrogen atoms.

87. Determine the lowest three rotational energy levels of
H2.

88. A carbon atom can hybridize in the sp2

configuration. (a) What is the angle between the hybrid
orbitals?

89. List five main characteristics of ionic crystals that
result from their high dissociation energy.

90. Why is bonding in H2
+ favorable? Express your

answer in terms of the symmetry of the electron wave
function.

91. Astronomers claim to find evidence of He2 from

light spectra of a distant star. Do you believe them?

92. Show that the moment of inertia of a diatomic

molecule is I = µr0
2 , where µ is the reduced mass, and

r0 is the distance between the masses.

93. Show that the average energy of an electron in a
one-dimensional metal is related to the Fermi energy by

E
−

= 1
2EF.

94. Measurements of a superconductor’s critical magnetic
field (in T) at various temperatures (in K) are given below.
Use a line of best fit to determine Bc(0). Assume

Tc = 9.3 K.

T (in K) Bc(T)

3.0 0.18

4.0 0.16

5.0 0.14

6.0 0.12

7.0 0.09

8.0 0.05

9.0 0.01

Table 9.6

95. Estimate the fraction of Si atoms that must be replaced
by As atoms in order to form an impurity band.

96. Transition in the rotation spectrum are observed at
ordinary room temperature ( T = 300 K ). According to

your lab partner, a peak in the spectrum corresponds to
a transition from the l = 4 to the l = 1 state. Is this

possible? If so, determine the momentum of inertia of the
molecule.

97. Determine the Fermi energies for (a) Mg, (b) Na, and
(c) Zn.

98. Find the average energy of an electron in a Zn wire.

99. What value of the repulsion constant, n, gives the
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measured dissociation energy of 158 kcal/mol for CsCl? 100. A physical model of a diamond suggests a BCC
packing structure. Why is this not possible?

CHALLENGE PROBLEMS

101. For an electron in a three-dimensional metal, show
that the average energy is given by

E
−

= 1
N ∫

0

EF
Eg(E)dE = 3

5EF,

Where N is the total number electrons in the metal.
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