1 | THE NATURE OF LIGHT

Figure 1.1 Due to total internal reflection, an underwater swimmer’s image is reflected back into the water where the camera is located. The circular ripple in the image center is actually on the water surface. Due to the viewing angle, total internal reflection is not occurring at the top edge of this image, and we can see a view of activities on the pool deck. (credit: modification of work by “jayhem”/Flickr)

Chapter Outline

1.1 The Propagation of Light
1.2 The Law of Reflection
1.3 Refraction
1.4 Total Internal Reflection
1.5 Dispersion
1.6 Huygens’s Principle
1.7 Polarization

Introduction

Our investigation of light revolves around two questions of fundamental importance: (1) What is the nature of light, and (2) how does light behave under various circumstances? Answers to these questions can be found in Maxwell’s equations (in Electromagnetic Waves (http://cnx.org/content/m58495/latest)), which predict the existence of electromagnetic waves and their behavior. Examples of light include radio and infrared waves, visible light, ultraviolet radiation, and X-rays. Interestingly, not all light phenomena can be explained by Maxwell’s theory. Experiments performed early in the twentieth century showed that light has corpuscular, or particle-like, properties. The idea that light can display both wave and particle characteristics is called wave-particle duality, which is examined in Photons and Matter Waves.

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of light when it interacts with optical devices such as mirrors, lenses, and apertures.
1.1 | The Propagation of Light

Learning Objectives

By the end of this section, you will be able to:

- Determine the index of refraction, given the speed of light in a medium
- List the ways in which light travels from a source to another location

The speed of light in a vacuum \(c \) is one of the fundamental constants of physics. As you will see when you reach Relativity, it is a central concept in Einstein’s theory of relativity. As the accuracy of the measurements of the speed of light improved, it was found that different observers, even those moving at large velocities with respect to each other, measure the same value for the speed of light. However, the speed of light does vary in a precise manner with the material it traverses. These facts have far-reaching implications, as we will see in later chapters.

The Speed of Light: Early Measurements

The first measurement of the speed of light was made by the Danish astronomer Ole Roemer (1644–1710) in 1675. He studied the orbit of Io, one of the four large moons of Jupiter, and found that it had a period of revolution of 42.5 h around Jupiter. He also discovered that this value fluctuated by a few seconds, depending on the position of Earth in its orbit around the Sun. Roemer realized that this fluctuation was due to the finite speed of light and could be used to determine \(c \).

Roemer found the period of revolution of Io by measuring the time interval between successive eclipses by Jupiter. Figure 1.2(a) shows the planetary configurations when such a measurement is made from Earth in the part of its orbit where it is receding from Jupiter. When Earth is at point \(A \), Earth, Jupiter, and Io are aligned. The next time this alignment occurs, Earth is at point \(B \), and the light carrying that information to Earth must travel to that point. Since \(B \) is farther from Jupiter than \(A \), light takes more time to reach Earth when Earth is at \(B \). Now imagine it is about 6 months later, and the planets are arranged as in part (b) of the figure. The measurement of Io’s period begins with Earth at point \(A' \) and Io eclipsed by Jupiter. The next eclipse then occurs when Earth is at point \(B' \), to which the light carrying the information of this eclipse must travel. Since \(B' \) is closer to Jupiter than \(A' \), light takes less time to reach Earth when it is at \(B' \). This time interval between the successive eclipses of Io seen at \(A' \) and \(B' \) is therefore less than the time interval between the eclipses seen at \(A \) and \(B \). By measuring the difference in these time intervals and with appropriate knowledge of the distance between Jupiter and Earth, Roemer calculated that the speed of light was \(2.0 \times 10^8 \) m/s, which is 33% below the value accepted today.

![Figure 1.2](http://example.com/figure1.2.png)
Figure 1.2 Roemer’s astronomical method for determining the speed of light. Measurements of Io’s period done with the configurations of parts (a) and (b) differ, because the light path length and associated travel time increase from \(A \) to \(B \) (a) but decrease from \(A' \) to \(B' \) (b).

The first successful terrestrial measurement of the speed of light was made by Armand Fizeau (1819–1896) in 1849. He placed a toothed wheel that could be rotated very rapidly on one hilltop and a mirror on a second hilltop 8 km away (Figure 1.3). An intense light source was placed behind the wheel, so that when the wheel rotated, it chopped the light beam into a succession of pulses. The speed of the wheel was then adjusted until no light returned to the observer located behind the wheel. This could only happen if the wheel rotated through an angle corresponding to a displacement of \((n + \frac{1}{2}) \) teeth,
while the pulses traveled down to the mirror and back. Knowing the rotational speed of the wheel, the number of teeth on
the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15×10^8 m/s, which is only 5%
too high.

The French physicist Jean Bernard Léon Foucault (1819–1868) modified Fizeau’s apparatus by replacing the toothed wheel
with a rotating mirror. In 1862, he measured the speed of light to be 2.98×10^8 m/s, which is within 0.6% of the presently
accepted value. Albert Michelson (1852–1931) also used Foucault’s method on several occasions to measure the speed of
light. His first experiments were performed in 1878; by 1926, he had refined the technique so well that he found c to be
$(2.99796 \pm 4) \times 10^8$ m/s.

Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important that it is
accepted as one of the basic physical quantities and has the value

$$c = 2.99792458 \times 10^8 \text{ m/s} \approx 3.00 \times 10^8 \text{ m/s} \quad (1.1)$$

where the approximate value of 3.00×10^8 m/s is used whenever three-digit accuracy is sufficient.

Speed of Light in Matter

The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed
of light depends strongly on the type of material, since its interaction varies with different atoms, crystal lattices, and other
substructures. We can define a constant of a material that describes the speed of light in it, called the index of refraction n:

$$n = \frac{c}{v} \quad (1.2)$$

where v is the observed speed of light in the material.

Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is always
greater than or equal to one; that is, $n \geq 1$. Table 1.1 gives the indices of refraction for some representative substances.
The values are listed for a particular wavelength of light, because they vary slightly with wavelength. (This can have
important effects, such as colors separated by a prism, as we will see in Dispersion.) Note that for gases, \(n \) is close to 1.0. This seems reasonable, since atoms in gases are widely separated, and light travels at \(c \) in the vacuum between atoms. It is common to take \(n = 1 \) for gases unless great precision is needed. Although the speed of light \(v \) in a medium varies considerably from its value \(c \) in a vacuum, it is still a large speed.

\[
\begin{array}{|c|c|}
\hline
\text{Medium} & n \\
\hline
\text{Gases at } 0^\circ\text{C, 1 atm} & \\
\text{Air} & 1.000293 \\
\text{Carbon dioxide} & 1.00045 \\
\text{Hydrogen} & 1.000139 \\
\text{Oxygen} & 1.000271 \\
\hline
\text{Liquids at } 20^\circ\text{C} & \\
\text{Benzene} & 1.501 \\
\text{Carbon disulfide} & 1.628 \\
\text{Carbon tetrachloride} & 1.461 \\
\text{Ethanol} & 1.361 \\
\text{Glycerine} & 1.473 \\
\text{Water, fresh} & 1.333 \\
\hline
\text{Solids at } 20^\circ\text{C} & \\
\text{Diamond} & 2.419 \\
\text{Fluorite} & 1.434 \\
\text{Glass, crown} & 1.52 \\
\text{Glass, flint} & 1.66 \\
\text{Ice (at } 0^\circ\text{C)} & 1.309 \\
\text{Polystyrene} & 1.49 \\
\text{Plexiglas} & 1.51 \\
\text{Quartz, crystalline} & 1.544 \\
\text{Quartz, fused} & 1.458 \\
\text{Sodium chloride} & 1.544 \\
\text{Zircon} & 1.923 \\
\hline
\end{array}
\]

Table 1.1 Index of Refraction in Various Media. For light with a wavelength of 589 nm in a vacuum

Example 1.1

Speed of Light in Jewelry

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

We can calculate the speed of light in a material \(v \) from the index of refraction \(n \) of the material, using the equation \(n = c/v \).
Solution

Rearranging the equation \[n = \frac{c}{v} \] for \(v \) gives us

\[v = \frac{c}{n}. \]

The index of refraction for zircon is given as 1.923 in Table 1.1, and \(c \) is given in Equation 1.1. Entering these values in the equation gives

\[v = \frac{3.00 \times 10^8}{1.923} \text{ m/s} = 1.56 \times 10^8 \text{ m/s}. \]

Significance

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally experience. The only substance listed in Table 1.1 that has a greater index of refraction than zircon is diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.

Check Your Understanding

Table 1.1 shows that ethanol and fresh water have very similar indices of refraction. By what percentage do the speeds of light in these liquids differ?

The Ray Model of Light

You have already studied some of the wave characteristics of light in the previous chapter on Electromagnetic Waves (http://cnx.org/content/m58495/latest). In this chapter, we start mainly with the ray characteristics. There are three ways in which light can travel from a source to another location (Figure 1.4). It can come directly from the source through empty space, such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the observer. Light can also arrive after being reflected, such as by a mirror. In all of these cases, we can model the path of light as a straight line called a ray.

Figure 1.4 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth, traveling through empty space directly from the source. (b) Light can reach a person by traveling through media like air and glass. (c) Light can also reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like a ray.

Experiments show that when light interacts with an object several times larger than its wavelength, it travels in straight lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the wavelength of visible light is less than a micron (a thousandth of a millimeter), it acts like a ray in the many common situations in which it encounters objects larger than a micron. For example, when visible light encounters anything large enough that we can observe it with unaided eyes, such as a coin, it acts like a ray, with generally negligible wave characteristics.

In all of these cases, we can model the path of light as straight lines. Light may change direction when it encounters objects (such as a mirror) or in passing from one material to another (such as in passing from air to glass), but it then continues in a straight line or as a ray. The word “ray” comes from mathematics and here means a straight line that originates at some
point. It is acceptable to visualize light rays as laser rays. The *ray model of light* describes the path of light as straight lines. Since light moves in straight lines, changing directions when it interacts with materials, its path is described by geometry and simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore called *geometric optics*. Two laws govern how light changes direction when it interacts with matter. These are the *law of reflection*, for situations in which light bounces off matter, and the *law of refraction*, for situations in which light passes through matter. We will examine more about each of these laws in upcoming sections of this chapter.

1.2 | The Law of Reflection

Learning Objectives

By the end of this section, you will be able to:

- Explain the reflection of light from polished and rough surfaces
- Describe the principle and applications of corner reflectors

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at a piece of white paper, you are seeing light scattered from it. Large telescopes use reflection to form an image of stars and other astronomical objects.

The *law of reflection* states that the angle of reflection equals the angle of incidence, or

\[
\theta_r = \theta_i
\]

The law of reflection is illustrated in **Figure 1.5**, which also shows how the angle of incidence and angle of reflection are measured relative to the perpendicular to the surface at the point where the light ray strikes.

![Figure 1.5](image)

Figure 1.5 The law of reflection states that the angle of reflection equals the angle of incidence—\(\theta_r = \theta_i \). The angles are measured relative to the perpendicular to the surface at the point where the ray strikes the surface.

We expect to see reflections from smooth surfaces, but **Figure 1.6** illustrates how a rough surface reflects light. Since the light strikes different parts of the surface at different angles, it is reflected in many different directions, or diffused. Diffused light is what allows us to see a sheet of paper from any angle, as shown in **Figure 1.7**(a). People, clothing, leaves, and walls all have rough surfaces and can be seen from all sides. A mirror, on the other hand, has a smooth surface (compared with the wavelength of light) and reflects light at specific angles, as illustrated in **Figure 1.7**(b). When the Moon reflects from a lake, as shown in **Figure 1.7**(c), a combination of these effects takes place.
Figure 1.6 Light is diffused when it reflects from a rough surface. Here, many parallel rays are incident, but they are reflected at many different angles, because the surface is rough.

Figure 1.7 (a) When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because its surface is rough and diffuses the light. (b) A mirror illuminated by many parallel rays reflects them in only one direction, because its surface is very smooth. Only the observer at a particular angle sees the reflected light. (c) Moonlight is spread out when it is reflected by the lake, because the surface is shiny but uneven. (credit c: modification of work by Diego Torres Silvestre)

When you see yourself in a mirror, it appears that the image is actually behind the mirror (Figure 1.8). We see the light coming from a direction determined by the law of reflection. The angles are such that the image is exactly the same distance behind the mirror as you stand in front of the mirror. If the mirror is on the wall of a room, the images in it are all behind the mirror, which can make the room seem bigger. Although these mirror images make objects appear to be where they cannot be (like behind a solid wall), the images are not figments of your imagination. Mirror images can be photographed and videotaped by instruments and look just as they do with our eyes (which are optical instruments themselves). The precise manner in which images are formed by mirrors and lenses is discussed in an upcoming chapter on Geometric Optics and Image Formation.
Corner Reflectors (Retroreflectors)

A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from which it came (Figure 1.9). This is true whenever the reflecting surfaces are perpendicular, and it is independent of the angle of incidence. (For proof, see at the end of this section.) Such an object is called a **corner reflector**, since the light bounces from its inside corner. Corner reflectors are a subclass of retroreflectors, which all reflect rays back in the directions from which they came. Although the geometry of the proof is much more complex, corner reflectors can also be built with three mutually perpendicular reflecting surfaces and are useful in three-dimensional applications.

Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in the direction from which it originated. Rather than simply reflecting light over a wide angle, retroreflection ensures high visibility if the observer and the light source are located together, such as a car’s driver and headlights. The Apollo astronauts placed a true corner reflector on the Moon (Figure 1.10). Laser signals from Earth can be bounced from that corner reflector to measure the gradually increasing distance to the Moon of a few centimeters per year.
Working on the same principle as these optical reflectors, corner reflectors are routinely used as radar reflectors (Figure 1.11) for radio-frequency applications. Under most circumstances, small boats made of fiberglass or wood do not strongly reflect radio waves emitted by radar systems. To make these boats visible to radar (to avoid collisions, for example), radar reflectors are attached to boats, usually in high places.

As a counterexample, if you are interested in building a stealth airplane, radar reflections should be minimized to evade detection. One of the design considerations would then be to avoid building 90° corners into the airframe.

1.3 | Refraction

Learning Objectives

By the end of this section, you will be able to:

- Describe how rays change direction upon entering a medium
- Apply the law of refraction in problem solving

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in two different places (Figure 1.12). This happens because light coming from the fish to you changes direction when it
leaves the tank, and in this case, it can travel two different paths to get to your eyes. The changing of a light ray’s direction (loosely called bending) when it passes through substances of different refractive indices is called **refraction** and is related to changes in the speed of light, \(v = \frac{c}{n} \). Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to data transmission through optical fibers.

Figure 1.12 (a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems to be in two different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This image shows refraction of light from a fish near the top of a fish tank.

Figure 1.13 shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light is reflected from the surface, but for now we concentrate on the light that is transmitted.) The change in direction of the light ray depends on the relative values of the indices of refraction (**The Propagation of Light**) of the two media involved. In the situations shown, medium 2 has a greater index of refraction than medium 1. Note that as shown in **Figure 1.13(a)**, the direction of the ray moves closer to the perpendicular when it progresses from a medium with a lower index of refraction to one with a higher index of refraction. Conversely, as shown in **Figure 1.13(b)**, the direction of the ray moves away from the perpendicular when it progresses from a medium with a higher index of refraction to one with a lower index of refraction. The path is exactly reversible.
The change in direction of a light ray depends on how the index of refraction changes when it crosses from one medium to another. In the situations shown here, the index of refraction is greater in medium 2 than in medium 1. (a) A ray of light moves closer to the perpendicular when entering a medium with a higher index of refraction. (b) A ray of light moves away from the perpendicular when entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction and thus a large change in angle. The exact mathematical relationship is the law of refraction, or Snell’s law, after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. The law of refraction is stated in equation form as

$$n_1 \sin \theta_1 = n_2 \sin \theta_2.$$ \hspace{1cm} (1.4)

Here n_1 and n_2 are the indices of refraction for media 1 and 2, and θ_1 and θ_2 are the angles between the rays and the perpendicular in media 1 and 2. The incoming ray is called the incident ray, the outgoing ray is called the refracted ray, and the associated angles are the incident angle and the refracted angle, respectively.

Snell’s experiments showed that the law of refraction is obeyed and that a characteristic index of refraction n could be assigned to a given medium and its value measured. Snell was not aware that the speed of light varied in different media, a key fact used when we derive the law of refraction theoretically using Huygens’s principle in Huygens’s Principle.

Example 1.2

Determining the Index of Refraction

Find the index of refraction for medium 2 in Figure 1.13(a), assuming medium 1 is air and given that the incident angle is 30.0° and the angle of refraction is 22.0°.

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus, $n_1 = 1.00$ here. From the given information, $\theta_1 = 30.0^\circ$ and $\theta_2 = 22.0^\circ$. With this information, the only unknown in Snell’s law is n_2, so we can use Snell’s law to find it.

Solution

From Snell’s law we have

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

and

$$n_2 = n_1 \frac{\sin \theta_1}{\sin \theta_2}.$$
Entering known values,

\[n_2 = \frac{1.00 \sin 30.0^\circ}{\sin 22.0^\circ} = \frac{0.500}{0.375} = 1.33. \]

Significance

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as when a ray passes from water to glass. Today, we can verify that the index of refraction is related to the speed of light in a medium by measuring that speed directly.

Explore bending of light (https://openstaxcollege.org/l/21bendoflight) between two media with different indices of refraction. Use the “Intro” simulation and see how changing from air to water to glass changes the bending angle. Use the protractor tool to measure the angles and see if you can recreate the configuration in Example 1.2. Also by measurement, confirm that the angle of reflection equals the angle of incidence.

Example 1.3

A Larger Change in Direction

Suppose that in a situation like that in Example 1.2, light goes from air to diamond and that the incident angle is 30.0°. Calculate the angle of refraction \(\theta_2 \) in the diamond.

Strategy

Again, the index of refraction for air is taken to be \(n_1 = 1.00 \), and we are given \(\theta_1 = 30.0^\circ \). We can look up the index of refraction for diamond in Table 1.1, finding \(n_2 = 2.419 \). The only unknown in Snell’s law is \(\theta_2 \), which we wish to determine.

Solution

Solving Snell’s law for \(\sin \theta_2 \) yields

\[\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1. \]

Entering known values,

\[\sin \theta_2 = \frac{1.00}{2.419} \sin 30.0^\circ = (0.413)(0.500) = 0.207. \]

The angle is thus

\[\theta_2 = \sin^{-1}(0.207) = 11.9^\circ. \]

Significance

For the same 30.0° angle of incidence, the angle of refraction in diamond is significantly smaller than in water (11.9° rather than 22.0°—see Example 1.2). This means there is a larger change in direction in diamond. The cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the greater the effect on the direction of the ray.

1.2 Check Your Understanding In Table 1.1, the solid with the next highest index of refraction after diamond is zircon. If the diamond in Example 1.3 were replaced with a piece of zircon, what would be the new angle of refraction?
1.4 | **Total Internal Reflection**

<table>
<thead>
<tr>
<th>Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>By the end of this section, you will be able to:</td>
</tr>
<tr>
<td>• Explain the phenomenon of total internal reflection</td>
</tr>
<tr>
<td>• Describe the workings and uses of optical fibers</td>
</tr>
<tr>
<td>• Analyze the reason for the sparkle of diamonds</td>
</tr>
</tbody>
</table>

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in Figure 1.14(a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first, the ray bends away from the perpendicular. (Since \(n_1 > n_2 \), the angle of refraction is greater than the angle of incidence—that is, \(\theta_2 > \theta_1 \).) Now imagine what happens as the incident angle increases. This causes \(\theta_2 \) to increase also. The largest the angle of refraction \(\theta_2 \) can be is 90°, as shown in part (b). The **critical angle** \(\theta_c \) for a combination of materials is defined to be the incident angle \(\theta_1 \) that produces an angle of refraction of 90°. That is, \(\theta_c \) is the incident angle for which \(\theta_2 = 90° \). If the incident angle \(\theta_1 \) is greater than the critical angle, as shown in Figure 1.14(c), then all of the light is reflected back into medium 1, a condition called **total internal reflection**. (As the figure shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of incidence in all three cases.)

Snell’s law states the relationship between angles and indices of refraction. It is given by
\[
n_1 \sin \theta_1 = n_2 \sin \theta_2.
\]

When the incident angle equals the critical angle \((\theta_1 = \theta_c) \), the angle of refraction is 90° \((\theta_2 = 90°) \). Noting that \(\sin 90° = 1 \), Snell’s law in this case becomes
\[
n_1 \sin \theta_1 = n_2.
\]

The critical angle \(\theta_c \) for a given combination of materials is thus

Figure 1.14
(a) A ray of light crosses a boundary where the index of refraction decreases. That is, \(n_2 < n_1 \). The ray bends away from the perpendicular. (b) The critical angle \(\theta_c \) is the angle of incidence for which the angle of refraction is 90°. (c) Total internal reflection occurs when the incident angle is greater than the critical angle.
Total internal reflection occurs for any incident angle greater than the critical angle \(\theta_c \), and it can only occur when the second medium has an index of refraction less than the first. Note that this equation is written for a light ray that travels in medium 1 and reflects from medium 2, as shown in Figure 1.14.

Example 1.4

Determining a Critical Angle

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index of refraction for polystyrene is 1.49.

Strategy

The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is satisfied, and we can use the equation

\[
\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right)
\]

for \(n_1 > n_2 \).

Solution

Substituting the identified values gives

\[
\theta_c = \sin^{-1} \left(\frac{1.00}{1.49} \right) = \sin^{-1}(0.671) = 42.2^\circ.
\]

Significance

This result means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2° is totally reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any need for the silvering used on common mirrors. Different combinations of materials have different critical angles, but any combination with \(n_1 > n_2 \) can produce total internal reflection. The same calculation as made here shows that the critical angle for a ray going from water to air is 48.6°, whereas that from diamond to air is 24.4°, and that from flint glass to crown glass is 66.3°.

Check Your Understanding

At the surface between air and water, light rays can go from air to water and from water to air. For which ray is there no possibility of total internal reflection?

In the photo that opens this chapter, the image of a swimmer underwater is captured by a camera that is also underwater. The swimmer in the upper half of the photograph, apparently facing upward, is, in fact, a reflected image of the swimmer below. The circular ripple near the photograph’s center is actually on the water surface. The undisturbed water surrounding it makes a good reflecting surface when viewed from below, thanks to total internal reflection. However, at the very top edge of this photograph, rays from below strike the surface with incident angles less than the critical angle, allowing the camera to capture a view of activities on the pool deck above water.

Fiber Optics: Endoscopes to Telephones

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit telephone, internet, and cable TV signals. **Fiber optics** employs the transmission of light down fibers of plastic or glass. Because the fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and, thus, be totally reflected (Figure 1.15). The index of refraction outside the fiber must be smaller than inside. In fact, most fibers have a varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are reflected around corners as shown, making the fibers into tiny light pipes.
Figure 1.15 Light entering a thin optic fiber may strike the inside surface at large or grazing angles and is completely reflected if these angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 1.16. The output of a device called an endoscope is shown in Figure 1.16(b). Endoscopes are used to explore the interior of the body through its natural orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is transmitted back out through another bundle to be observed.

Figure 1.16 (a) An image “A” is transmitted by a bundle of optical fibers. (b) An endoscope is used to probe the body, both transmitting light to the interior and returning an image such as the one shown of a human epiglottis (a structure at the base of the tongue). (credit b: modification of work by “Med_Chaos”/Wikimedia Commons)

Fiber optics has revolutionized surgical techniques and observations within the body, with a host of medical diagnostic and therapeutic uses. Surgery can be performed, such as arthroscopic surgery on a knee or shoulder joint, employing cutting tools attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp for external examination. The flexibility of the fiber optic bundle allows doctors to navigate it around small and difficult-to-reach regions in the body, such as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing plaques in major arteries, as well as delivering light to activate chemotherapy drugs, are becoming commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are small and the
surgeon’s fingers do not need to touch the diseased tissue.

Optical fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core (Figure 1.17). The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass between fibers in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total internal reflection back into the core), none can be transmitted between clad fibers that are in contact with one another. Instead, the light is propagated along the length of the fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding and an additional protective layer make optical fibers durable as well as flexible.

![Figure 1.17](image)

Figure 1.17 Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection, even when fibers are in contact with one another.

Special tiny lenses that can be attached to the ends of bundles of fibers have been designed and fabricated. Light emerging from a fiber bundle can be focused through such a lens, imaging a tiny spot. In some cases, the spot can be scanned, allowing quality imaging of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle have the capacity to image the interior of organs located tens of microns below the surface without cutting the surface—an area known as nonintrusive diagnostics. This is particularly useful for determining the extent of cancers in the stomach and bowel.

In another type of application, optical fibers are commonly used to carry signals for telephone conversations and internet communications. Extensive optical fiber cables have been placed on the ocean floor and underground to enable optical communications. Optical fiber communication systems offer several advantages over electrical (copper)-based systems, particularly for long distances. The fibers can be made so transparent that light can travel many kilometers before it becomes dim enough to require amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers emit light with characteristics that allow far more conversations in one fiber than are possible with electric signals on a single conductor. This property of optical fibers is called high bandwidth. Optical signals in one fiber do not produce undesirable effects in other adjacent fibers. This property of optical fibers is called reduced crosstalk. We shall explore the unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds

Corner reflectors (The Law of Reflection) are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is easy to obtain a critical angle that is less than 45°. One use of these perfect mirrors is in binoculars, as shown in Figure 1.18. Another use is in periscopes found in submarines.
Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The critical angle for a diamond-to-air surface is only 24.4°, so when light enters a diamond, it has trouble getting back out (Figure 1.19). Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4°. Facets on diamonds are specifically intended to make this unlikely. Good diamonds are very clear, so that the light makes many internal reflections and is concentrated before exiting—hence the bright sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but it is not as large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of refraction (≈ 2.17), but it is still less than that of diamond.) The colors you see emerging from a clear diamond are not due to the diamond’s color, which is usually nearly colorless. The colors result from dispersion, which we discuss in Dispersion. Colored diamonds get their color from structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces around 90% of the world’s pink, red, champagne, and cognac diamonds, whereas around 50% of the world’s clear diamonds come from central and southern Africa.

Figure 1.18 These binoculars employ corner reflectors (prisms) with total internal reflection to get light to the observer’s eyes.

Figure 1.19 Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle brightly.
Explore refraction and reflection of light (https://openstaxcollege.org/l/21bendoflight) between two media with different indices of refraction. Try to make the refracted ray disappear with total internal reflection. Use the protractor tool to measure the critical angle and compare with the prediction from Equation 1.5.

1.5 | Dispersion

Learning Objectives

By the end of this section, you will be able to:

• Explain the cause of dispersion in a prism
• Describe the effects of dispersion in producing rainbows
• Summarize the advantages and disadvantages of dispersion

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass prism or a diamond (Figure 1.20).

![Image of a rainbow and a prism](https://openstaxcollege.org/l/21rainbowandprism)

Figure 1.20 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit a: modification of work by “Alfredo55”/Wikimedia Commons; credit b: modification of work by NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. These colors are associated with different wavelengths of light, as shown in Figure 1.21. When our eye receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow, because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors shown in the figure. This implies that white light is spread out in a rainbow according to wavelength. Dispersion is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever the propagation of light depends on wavelength.

![Image of a rainbow spectrum](https://openstaxcollege.org/l/21rainbowspectrum)

Figure 1.21 Even though rainbows are associated with six colors, the rainbow is a continuous distribution of colors according to wavelengths.

Any type of wave can exhibit dispersion. For example, sound waves, all types of electromagnetic waves, and water waves can be dispersed according to wavelength. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it dispersed by
interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called interstellar medium.

Nick Moore’s video (https://openstaxcollege.org/l/21nickmoorevid) discusses dispersion of a pulse as he taps a long spring. Follow his explanation as Moore replays the high-speed footage showing high frequency waves outrunning the lower frequency waves.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of refraction, as we know from Snell’s law. We know that the index of refraction n depends on the medium. But for a given medium, n also depends on wavelength (Table 1.2). Note that for a given medium, n increases as wavelength decreases and is greatest for violet light. Thus, violet light is bent more than red light, as shown for a prism in Figure 1.22(b). White light is dispersed into the same sequence of wavelengths as seen in Figure 1.20 and Figure 1.21.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Red (660 nm)</th>
<th>Orange (610 nm)</th>
<th>Yellow (580 nm)</th>
<th>Green (550 nm)</th>
<th>Blue (470 nm)</th>
<th>Violet (410 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.331</td>
<td>1.332</td>
<td>1.333</td>
<td>1.335</td>
<td>1.338</td>
<td>1.342</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.410</td>
<td>2.415</td>
<td>2.417</td>
<td>2.426</td>
<td>2.444</td>
<td>2.458</td>
</tr>
<tr>
<td>Glass, crown</td>
<td>1.512</td>
<td>1.514</td>
<td>1.518</td>
<td>1.519</td>
<td>1.524</td>
<td>1.530</td>
</tr>
<tr>
<td>Glass, flint</td>
<td>1.662</td>
<td>1.665</td>
<td>1.667</td>
<td>1.674</td>
<td>1.684</td>
<td>1.698</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.488</td>
<td>1.490</td>
<td>1.492</td>
<td>1.493</td>
<td>1.499</td>
<td>1.506</td>
</tr>
<tr>
<td>Quartz, fused</td>
<td>1.455</td>
<td>1.456</td>
<td>1.458</td>
<td>1.459</td>
<td>1.462</td>
<td>1.468</td>
</tr>
</tbody>
</table>

Table 1.2 Index of Refraction n in Selected Media at Various Wavelengths

Figure 1.22 (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism (shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

Example 1.5

Dispersion of White Light by Flint Glass

A beam of white light goes from air into flint glass at an incidence angle of 43.2°. What is the angle between the red (660 nm) and violet (410 nm) parts of the refracted light?
Strategy

Values for the indices of refraction for flint glass at various wavelengths are listed in Table 1.2. Use these values for calculate the angle of refraction for each color and then take the difference to find the dispersion angle.

Solution

Applying the law of refraction for the red part of the beam

\[n_{\text{air}} \sin \theta_{\text{air}} = n_{\text{red}} \sin \theta_{\text{red}}, \]

we can solve for the angle of refraction as

\[\theta_{\text{red}} = \sin^{-1}\left(\frac{n_{\text{air}} \sin \theta_{\text{air}}}{n_{\text{red}}}\right) = \sin^{-1}\left(\frac{(1.000) \sin 43.2^\circ}{1.662}\right) = 27.0^\circ. \]

Similarly, the angle of incidence for the violet part of the beam is

\[\theta_{\text{violet}} = \sin^{-1}\left(\frac{n_{\text{air}} \sin \theta_{\text{air}}}{n_{\text{violet}}}\right) = \sin^{-1}\left(\frac{(1.000) \sin 43.2^\circ}{1.698}\right) = 26.4^\circ. \]

The difference between these two angles is

\[\theta_{\text{red}} - \theta_{\text{violet}} = 27.0^\circ - 26.4^\circ = 0.6^\circ. \]

Significance

Although 0.6° may seem like a negligibly small angle, if this beam is allowed to propagate a long enough distance, the dispersion of colors becomes quite noticeable.

1.4 Check Your Understanding

In the preceding example, how much distance inside the block of flint glass would the red and the violet rays have to progress before they are separated by 1.0 mm?

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when you look away from the Sun. Light enters a drop of water and is reflected from the back of the drop (Figure 1.23). The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed (Figure 1.24(a)). (No dispersion occurs at the back surface, because the law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer depends on the myriad rays being refracted and reflected toward the observer’s eyes from numerous drops of water. The effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a
rainbow comes from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in part (b). If two reflections of light occur within the water drop, another “secondary” rainbow is produced. This rare event produces an arc that lies above the primary rainbow arc, as in part (c), and produces colors in the reverse order of the primary rainbow, with red at the lowest angle and violet at the largest angle.

Figure 1.23 A ray of light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed both as it enters and as it leaves the drop.

Figure 1.24 (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct angle with the parallel rays of sunlight for the observer to receive the refracted rays. (c) Double rainbow. (credit c: modification of work by “Nicholas”/Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages in a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly pure wavelength, its light experiences little dispersion, an advantage over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to us from outer space can be used to determine the amount of matter they pass through.
1.6 | Huygens’s Principle

Learning Objectives

By the end of this section, you will be able to:

- Describe Huygens’s principle
- Use Huygens’s principle to explain the law of reflection
- Use Huygens’s principle to explain the law of refraction
- Use Huygens’s principle to explain diffraction

So far in this chapter, we have been discussing optical phenomena using the ray model of light. However, some phenomena require analysis and explanations based on the wave characteristics of light. This is particularly true when the wavelength is not negligible compared to the dimensions of an optical device, such as a slit in the case of diffraction. Huygens’s principle is an indispensable tool for this analysis.

Figure 1.25 shows how a transverse wave looks as viewed from above and from the side. A light wave can be imagined to propagate like this, although we do not actually see it wiggling through space. From above, we view the wave fronts (or wave crests) as if we were looking down on ocean waves. The side view would be a graph of the electric or magnetic field. The view from above is perhaps more useful in developing concepts about wave optics.

![Figure 1.25](image)

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail how and where waves propagate. Starting from some known position, Huygens’s principle states that every point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the wave itself. The new wave front is tangent to all of the wavelets.

Figure 1.26 shows how Huygens’s principle is applied. A wave front is the long edge that moves, for example, with the crest or the trough. Each point on the wave front emits a semicircular wave that moves at the propagation speed \(v\). We can draw these wavelets at a time \(t\) later, so that they have moved a distance \(s = vt\). The new wave front is a plane tangent to the wavelets and is where we would expect the wave to be a time \(t\) later. Huygens’s principle works for all types of waves, including water waves, sound waves, and light waves. It is useful not only in describing how light waves propagate but also in explaining the laws of reflection and refraction. In addition, we will see that Huygens’s principle tells us how and where light rays interfere.
Reflection

Figure 1.27 shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection. As the wave front strikes the mirror, wavelets are first emitted from the left part of the mirror and then from the right. The wavelets closer to the left have had time to travel farther, producing a wave front traveling in the direction shown.

Refraction

The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium to another (Figure 1.28). Each wavelet in the figure was emitted when the wave front crossed the interface between the media. Since the speed of light is smaller in the second medium, the waves do not travel as far in a given time, and the new wave front changes direction as shown. This explains why a ray changes direction to become closer to the perpendicular when light slows down. Snell’s law can be derived from the geometry in Figure 1.28 (Example 1.6).
Huygens’s principle applied to a plane wave front traveling from one medium to another, where its speed is less. The ray bends toward the perpendicular, since the wavelets have a lower speed in the second medium.

Example 1.6

Deriving the Law of Refraction

By examining the geometry of the wave fronts, derive the law of refraction.

Strategy

Consider Figure 1.29, which expands upon Figure 1.28. It shows the incident wave front just reaching the surface at point A, while point B is still well within medium 1. In the time Δt it takes for a wavelet from B to reach B' on the surface at speed $v_1 = c/n_1$, a wavelet from A travels into medium 2 a distance of $AA' = v_2 \Delta t$, where $v_2 = c/n_2$. Note that in this example, v_2 is slower than v_1 because $n_1 < n_2$.

Figure 1.29 Geometry of the law of refraction from medium 1 to medium 2.
Solution

The segment on the surface AB' is shared by both the triangle ABB' inside medium 1 and the triangle $AA'B'$ inside medium 2. Note that from the geometry, the angle $\angle BAB'$ is equal to the angle of incidence, θ_1. Similarly, $\angle A'B'A$ is θ_2.

The length of AB' is given in two ways as

$$AB' = \frac{BB'}{\sin \theta_1} = \frac{AA'}{\sin \theta_2}.$$

Inverting the equation and substituting $AA' = c\Delta t/n_2$ from above and similarly $BB' = c\Delta t/n_1$, we obtain

$$\frac{\sin \theta_1}{c\Delta t/n_1} = \frac{\sin \theta_2}{c\Delta t/n_2}.$$

Cancellation of $c\Delta t$ allows us to simplify this equation into the familiar form

$$n_1 \sin \theta_1 = n_2 \sin \theta_2.$$

Significance

Although the law of refraction was established experimentally by Snell and stated in Refraction, its derivation here requires Huygens’s principle and the understanding that the speed of light is different in different media.

1.5 Check Your Understanding In Example 1.6, we had $n_1 < n_2$. If n_2 were decreased such that $n_1 > n_2$ and the speed of light in medium 2 is faster than in medium 1, what would happen to the length of AA'? What would happen to the wave front $A'B'$ and the direction of the refracted ray?

This applet (https://openstaxcollege.org/l/21walfedaniref) by Walter Fendt shows an animation of reflection and refraction using Huygens’s wavelets while you control the parameters. Be sure to click on “Next step” to display the wavelets. You can see the reflected and refracted wave fronts forming.

Diffraction

What happens when a wave passes through an opening, such as light shining through an open door into a dark room? For light, we observe a sharp shadow of the doorway on the floor of the room, and no visible light bends around corners into other parts of the room. When sound passes through a door, we hear it everywhere in the room and thus observe that sound spreads out when passing through such an opening (Figure 1.30). What is the difference between the behavior of sound waves and light waves in this case? The answer is that light has very short wavelengths and acts like a ray. Sound has wavelengths on the order of the size of the door and bends around corners (for frequency of 1000 Hz,

$$\lambda = \frac{c}{f} = \frac{330 \text{ m/s}}{1000 \text{ s}^{-1}} = 0.33 \text{ m},$$

about three times smaller than the width of the doorway).
Figure 1.30 (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s wavelength is very small compared with the size of the door, it acts like a ray. (b) Sound waves bend into all parts of the room, a wave effect, because their wavelength is similar to the size of the door.

If we pass light through smaller openings such as slits, we can use Huygens’s principle to see that light bends as sound does (Figure 1.31). The bending of a wave around the edges of an opening or an obstacle is called diffraction. Diffraction is a wave characteristic and occurs for all types of waves. If diffraction is observed for some phenomenon, it is evidence that the phenomenon is a wave. Thus, the horizontal diffraction of the laser beam after it passes through the slits in Figure 1.31 is evidence that light is a wave. You will learn about diffraction in much more detail in the chapter on Diffraction.

Figure 1.31 Huygens’s principle applied to a plane wave front striking an opening. The edges of the wave front bend after passing through the opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent with the fact that wave characteristics are most noticeable for interactions with objects about the same size as the wavelength.
1.7 | Polarization

Learning Objectives

By the end of this section, you will be able to:

- Explain the change in intensity as polarized light passes through a polarizing filter
- Calculate the effect of polarization by reflection and Brewster's angle
- Describe the effect of polarization by scattering
- Explain the use of polarizing materials in devices such as LCDs

Polarizing sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass (**Figure 1.32**). They have this ability because of a wave characteristic of light called polarization. What is polarization? How is it produced? What are some of its uses? The answers to these questions are related to the wave character of light.

![Figure 1.32](image)

Figure 1.32 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the surface of water. Part (b) of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds and sky observed in part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water. (credit a and credit b: modifications of work by “Amithshs”/Wikimedia Commons)

Malus’s Law

Light is one type of electromagnetic (EM) wave. As noted in the previous chapter on [Electromagnetic Waves](http://cnx.org/content/m58495/latest/), EM waves are transverse waves consisting of varying electric and magnetic fields that oscillate perpendicular to the direction of propagation (**Figure 1.33**). However, in general, there are no specific directions for the oscillations of the electric and magnetic fields; they vibrate in any randomly oriented plane perpendicular to the direction of propagation. **Polarization** is the attribute that a wave’s oscillations do have a definite direction relative to the direction of propagation of the wave. (This is not the same type of polarization as that discussed for the separation of charges.) Waves having such a direction are said to be polarized. For an EM wave, we define the **direction of polarization** to be the direction parallel to the electric field. Thus, we can think of the electric field arrows as showing the direction of polarization, as in **Figure 1.33**.
Figure 1.33 An EM wave, such as light, is a transverse wave. The electric (\vec{E}) and magnetic (\vec{B}) fields are perpendicular to the direction of propagation. The direction of polarization of the wave is the direction of the electric field.

To examine this further, consider the transverse waves in the ropes shown in Figure 1.34. The oscillations in one rope are in a vertical plane and are said to be vertically polarized. Those in the other rope are in a horizontal plane and are horizontally polarized. If a vertical slit is placed on the first rope, the waves pass through. However, a vertical slit blocks the horizontally polarized waves. For EM waves, the direction of the electric field is analogous to the disturbances on the ropes.

The Sun and many other light sources produce waves that have the electric fields in random directions (Figure 1.35(a)). Such light is said to be unpolarized, because it is composed of many waves with all possible directions of polarization. Polaroid materials—which were invented by the founder of the Polaroid Corporation, Edwin Land—act as a polarizing slit for light, allowing only polarization in one direction to pass through. Polarizing filters are composed of long molecules aligned in one direction. If we think of the molecules as many slits, analogous to those for the oscillating ropes, we can understand why only light with a specific polarization can get through. The axis of a polarizing filter is the direction along which the filter passes the electric field of an EM wave.
Figure 1.35 The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the individual waves composing the ray. (a) If the light is unpolarized, the arrows point in all directions. (b) A polarizing filter has a polarization axis that acts as a slit passing through electric fields parallel to its direction. The direction of polarization of an EM wave is defined to be the direction of its electric field.

Figure 1.36 shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the light along its axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized light passed by the first filter is also passed by the second filter. If the second polarizing filter is rotated, only the component of the light parallel to the second filter’s axis is passed. When the axes are perpendicular, no light is passed by the second filter.

Figure 1.36 The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed by the second polarizing filter, because its axis is parallel to the first. (b) As the second filter is rotated, only part of the light is passed. (c) When the second filter is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed above two others. Its axis is perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter area). (credit d: modification of work by P.P. Urone)
Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the direction of polarization and the axis of a filter \(\theta \). If the electric field has an amplitude \(E \), then the transmitted part of the wave has an amplitude \(E \cos \theta \) (Figure 1.37). Since the intensity of a wave is proportional to its amplitude squared, the intensity \(I \) of the transmitted wave is related to the incident wave by

\[
I = I_0 \cos^2 \theta
\]

where \(I_0 \) is the intensity of the polarized wave before passing through the filter. This equation is known as **Malus’s law**.

This [Open Source Physics animation](https://openstaxcollege.org/l/21phyanielefie) helps you visualize the electric field vectors as light encounters a polarizing filter. You can rotate the filter—note that the angle displayed is in radians. You can also rotate the animation for 3D visualization.

Example 1.7

Calculating Intensity Reduction by a Polarizing Filter

What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its intensity by 90.0%?

Strategy

When the intensity is reduced by 90.0%, it is 10.0% or 0.100 times its original value. That is, \(I = 0.100 I_0 \).

Using this information, the equation \(I = I_0 \cos^2 \theta \) can be used to solve for the needed angle.

Solution

Solving the equation \(I = I_0 \cos^2 \theta \) for \(\cos \theta \) and substituting with the relationship between \(I \) and \(I_0 \) gives

\[
\cos \theta = \sqrt{I/I_0} = \sqrt{0.100 I_0/I_0} = 0.3162.
\]

Solving for \(\theta \) yields

\[
\theta = \cos^{-1} 0.3162 = 71.6^\circ.
\]

Significance

A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to
10.0% of its original value. This seems reasonable based on experimenting with polarizing films. It is interesting that at an angle of \(45^\circ\), the intensity is reduced to 50% of its original value. Note that 71.6° is 18.4° from reducing the intensity to zero, and that at an angle of 18.4°, the intensity is reduced to 90.0% of its original value, giving evidence of symmetry.

Check Your Understanding

Although we did not specify the direction in **Example 1.7**, let’s say the polarizing filter was rotated clockwise by 71.6° to reduce the light intensity by 90.0%. What would be the intensity reduction if the polarizing filter were rotated counterclockwise by 71.6°?

Polarization by Reflection

By now, you can probably guess that polarizing sunglasses cut the glare in reflected light, because that light is polarized. You can check this for yourself by holding polarizing sunglasses in front of you and rotating them while looking at light reflected from water or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely black. This implies the reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

Figure 1.38 illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is preferentially refracted at the surface, so the reflected light is left more horizontally polarized. The reasons for this phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering this is to imagine the polarization direction to be like an arrow. Vertical polarization is like an arrow perpendicular to the surface and is more likely to stick and not be reflected. Horizontal polarization is like an arrow bouncing on its side and is more likely to be reflected. Sunglasses with vertical axes thus block more reflected light than unpolarized light from other sources.

![Diagram of Polarization by Reflection](image)

Figure 1.38 Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin to arrows striking on their sides and bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of refraction of the media involved. It can be shown that reflected light is completely polarized at an angle of reflection \(\theta_b\) given by

\[
\tan \theta_b = \frac{n_2}{n_1}
\]

(1.7)
where n_1 is the medium in which the incident and reflected light travel and n_2 is the index of refraction of the medium that forms the interface that reflects the light. This equation is known as **Brewster’s law** and θ_b is known as **Brewster’s angle**, named after the nineteenth-century Scottish physicist who discovered them.

This Open Source Physics animation (https://openstaxcollege.org/l/21phyaniincref) shows incident, reflected, and refracted light as rays and EM waves. Try rotating the animation for 3D visualization and also change the angle of incidence. Near Brewster’s angle, the reflected light becomes highly polarized.

Example 1.8

Calculating Polarization by Reflection

(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b) From glass?

Strategy

All we need to solve these problems are the indices of refraction. Air has $n_1 = 1.00$, water has $n_2 = 1.333$, and crown glass has $n_2' = 1.520$. The equation $\tan \theta_b = \frac{n_2}{n_1}$ can be directly applied to find θ_b in each case.

Solution

a. Putting the known quantities into the equation

$$\tan \theta_b = \frac{n_2}{n_1}$$

gives

$$\tan \theta_b = \frac{1.333}{1.00} = 1.333.$$

Solving for the angle θ_b yields

$$\theta_b = \tan^{-1} 1.333 = 53.1^\circ.$$

b. Similarly, for crown glass and air,

$$\tan \theta_b' = \frac{n_2'}{n_1} = \frac{1.520}{1.00} = 1.52.$$

Thus,

$$\theta_b' = \tan^{-1} 1.52 = 56.7^\circ.$$

Significance

Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical. Brewster’s angle for water and air are similar to those for glass and air, so that sunglasses are equally effective for light reflected from either water or glass under similar circumstances. Light that is not reflected is refracted into these media. Therefore, at an incident angle equal to Brewster’s angle, the refracted light is slightly polarized vertically. It is not completely polarized vertically, because only a small fraction of the incident light is reflected, so a significant amount of horizontally polarized light is refracted.

1.7 **Check Your Understanding** What happens at Brewster’s angle if the original incident light is already 100% vertically polarized?

Atomic Explanation of Polarizing Filters

Polarizing filters have a polarization axis that acts as a slit. This slit passes EM waves (often visible light) that have an
electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to the axis, as shown in Figure 1.39.

Figure 1.39 Long molecules are aligned perpendicular to the axis of a polarizing filter. In an EM wave, the component of the electric field perpendicular to these molecules passes through the filter, whereas the component parallel to the molecules is absorbed.

Figure 1.40 illustrates how the component of the electric field parallel to the long molecules is absorbed. An EM wave is composed of oscillating electric and magnetic fields. The electric field is strong compared with the magnetic field and is more effective in exerting force on charges in the molecules. The most affected charged particles are the electrons, since electron masses are small. If an electron is forced to oscillate, it can absorb energy from the EM wave. This reduces the field in the wave and, hence, reduces its intensity. In long molecules, electrons can more easily oscillate parallel to the molecule than in the perpendicular direction. The electrons are bound to the molecule and are more restricted in their movement perpendicular to the molecule. Thus, the electrons can absorb EM waves that have a component of their electric field parallel to the molecule. The electrons are much less responsive to electric fields perpendicular to the molecule and allow these fields to pass. Thus, the axis of the polarizing filter is perpendicular to the length of the molecule.

![Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.](image)

Figure 1.40

Polarization by Scattering

If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the sky get bright and dim. This is a clear indication that light scattered by air is partially polarized. **Figure 1.41** helps illustrate how
this happens. Since light is a transverse EM wave, it vibrates the electrons of air molecules perpendicular to the direction that it is traveling. The electrons then radiate like small antennae. Since they are oscillating perpendicular to the direction of the light ray, they produce EM radiation that is polarized perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the original ray, as in the figure, there can be no polarization in the scattered light parallel to the original ray, because that would require the original ray to be a longitudinal wave. Along other directions, a component of the other polarization can be projected along the line of sight, and the scattered light is only partially polarized. Furthermore, multiple scattering can bring light to your eyes from other directions and can contain different polarizations.

![Figure 1.41 Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the original direction.](image)

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered EM waves can be a useful analytical tool in determining the scattering source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored pigments embedded in them, whereas others use either a nonreflective or reflective coating. A recent development is photochromic lenses, which darken in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline molecules that change their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Liquid Crystals and Other Polarization Effects in Materials

Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens, cellphones, flat screen televisions, and many other places, you may not be aware that they are based on polarization. Liquid crystals are so named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the property that they can rotate the polarization of light passing through them by 90°. Furthermore, this property can be turned off by the application of a voltage, as illustrated in Figure 1.42. It is possible to manipulate this characteristic quickly and in small, well-defined regions to create the contrast patterns we see in so many LCD devices.

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front screen through millions of tiny units called pixels (picture elements). One of these is shown in Figure 1.42(a) and (b). Each unit has three cells, with red, blue, or green filters, each controlled independently. When the voltage across a liquid crystal is switched off, the liquid crystal passes the light through the particular filter. We can vary the picture contrast by varying the strength of the voltage applied to the liquid crystal.
Figure 1.42 (a) Polarized light is rotated 90° by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in laptop computers and TVs. (credit c: modification of work by Jane Whitney)

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be optically active. Examples include sugar water, insulin, and collagen (Figure 1.43). In addition to depending on the type of substance, the amount and direction of rotation depend on several other factors. Among these is the concentration of the substance, the distance the light travels through it, and the wavelength of light. Optical activity is due to the asymmetrical shape of molecules in the substance, such as being helical. Measurements of the rotation of polarized light passing through substances can thus be used to measure concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such as proteins, and factors that affect their shapes, such as temperature and pH.

Figure 1.43 Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical stress analysis on complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as seen in Figure 1.44. It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is
sometimes also used for artistic purposes.

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam of light into two polarized beams. This occurs because the crystal has one value for the index of refraction of polarized light but a different value for the index of refraction of light polarized in the perpendicular direction, so that each component has its own angle of refraction. Such crystals are said to be birefringent, and, when aligned properly, two perpendicularly polarized beams will emerge from the crystal (Figure 1.45). Birefringent crystals can be used to produce polarized beams from unpolarized light. Some birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and other polarizers work.
CHAPTER 1 REVIEW

KEY TERMS

birefringent refers to crystals that split an unpolarized beam of light into two beams
Brewster’s angle angle of incidence at which the reflected light is completely polarized
Brewster’s law \[\tan \theta_b = \frac{n_2}{n_1}, \] where \(n_1 \) is the medium in which the incident and reflected light travel and \(n_2 \) is the index of refraction of the medium that forms the interface that reflects the light
corner reflector object consisting of two (or three) mutually perpendicular reflecting surfaces, so that the light that enters is reflected back exactly parallel to the direction from which it came
critical angle incident angle that produces an angle of refraction of 90°
direction of polarization direction parallel to the electric field for EM waves
dispersion spreading of light into its spectrum of wavelengths
fiber optics field of study of the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection
geometric optics part of optics dealing with the ray aspect of light
horizontally polarized oscillations are in a horizontal plane
Huygens’s principle every point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the wave itself; the new wave front is a plane tangent to all of the wavelets
index of refraction for a material, the ratio of the speed of light in a vacuum to that in a material
law of reflection angle of reflection equals the angle of incidence
law of refraction when a light ray crosses from one medium to another, it changes direction by an amount that depends on the index of refraction of each medium and the sines of the angle of incidence and angle of refraction
Malus’s law where \(I_0 \) is the intensity of the polarized wave before passing through the filter
optically active substances that rotate the plane of polarization of light passing through them
polarization attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave
polarized refers to waves having the electric and magnetic field oscillations in a definite direction
ray straight line that originates at some point
refraction changing of a light ray’s direction when it passes through variations in matter
total internal reflection phenomenon at the boundary between two media such that all the light is reflected and no refraction occurs
unpolarized refers to waves that are randomly polarized
vertically polarized oscillations are in a vertical plane
wave optics part of optics dealing with the wave aspect of light

KEY EQUATIONS

Speed of light \[c = 2.99792458 \times 10^8 \text{ m/s} \approx 3.00 \times 10^8 \text{ m/s} \]
Index of refraction \[n = \frac{c}{V} \]
Law of reflection \[\theta_r = \theta_i \]
Law of refraction (Snell's law) \[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Critical angle \[\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right) \text{ for } n_1 > n_2 \]

Malus's law \[I = I_0 \cos^2 \theta \]

Brewster's law \[\tan \theta_b = \frac{n_2}{n_1} \]

SUMMARY

1.1 The Propagation of Light
- The speed of light in a vacuum is \(c = 2.99792458 \times 10^8 \text{ m/s} \approx 3.00 \times 10^8 \text{ m/s} \).
- The index of refraction of a material is \(n = c/v \), where \(v \) is the speed of light in a material and \(c \) is the speed of light in a vacuum.
- The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of light is called geometric optics.
- Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; and (3) after being reflected from a mirror.

1.2 The Law of Reflection
- When a light ray strikes a smooth surface, the angle of reflection equals the angle of incidence.
- A mirror has a smooth surface and reflects light at specific angles.
- Light is diffused when it reflects from a rough surface.

1.3 Refraction
- The change of a light ray’s direction when it passes through variations in matter is called refraction.
- The law of refraction, also called Snell’s law, relates the indices of refraction for two media at an interface to the change in angle of a light ray passing through that interface.

1.4 Total Internal Reflection
- The incident angle that produces an angle of refraction of 90° is called the critical angle.
- Total internal reflection is a phenomenon that occurs at the boundary between two media, such that if the incident angle in the first medium is greater than the critical angle, then all the light is reflected back into that medium.
- Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal reflection.
- Cladding prevents light from being transmitted between fibers in a bundle.
- Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

1.5 Dispersion
- The spreading of white light into its full spectrum of wavelengths is called dispersion.
- Rainbows are produced by a combination of refraction and reflection, and involve the dispersion of sunlight into a continuous distribution of colors.
- Dispersion produces beautiful rainbows but also causes problems in certain optical systems.

1.6 Huygens’s Principle

- According to Huygens’s principle, every point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the wave itself. The new wave front is tangent to all of the wavelets.
- A mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection.
- The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one medium to another.
- The bending of a wave around the edges of an opening or an obstacle is called diffraction.

1.7 Polarization

- Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave. The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.
- Unpolarized light is composed of many rays having random polarization directions.
- Unpolarized light can be polarized by passing it through a polarizing filter or other polarizing material. The process of polarizing light decreases its intensity by a factor of 2.
- The intensity, I, of polarized light after passing through a polarizing filter is $I = I_0 \cos^2 \theta$, where I_0 is the incident intensity and θ is the angle between the direction of polarization and the axis of the filter.
- Polarization is also produced by reflection.
- Brewster’s law states that reflected light is completely polarized at the angle of reflection θ_b, known as Brewster’s angle.
- Polarization can also be produced by scattering.
- Several types of optically active substances rotate the direction of polarization of light passing through them.

CONCEPTUAL QUESTIONS

1.1 The Propagation of Light

1. Under what conditions can light be modeled like a ray? Like a wave?

2. Why is the index of refraction always greater than or equal to 1?

3. Does the fact that the light flash from lightning reaches you before its sound prove that the speed of light is extremely large or simply that it is greater than the speed of sound? Discuss how you could use this effect to get an estimate of the speed of light.

4. Speculate as to what physical process might be responsible for light traveling more slowly in a medium than in a vacuum.

1.2 The Law of Reflection

5. Using the law of reflection, explain how powder takes the shine off of a person’s nose. What is the name of the optical effect?

1.3 Refraction

6. Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe how this occurs in a specific situation, such as light interacting with crushed ice.

7. Will light change direction toward or away from the perpendicular when it goes from air to water? Water to glass? Glass to air?

8. Explain why an object in water always appears to be at a depth shallower than it actually is?

9. Explain why a person’s legs appear very short when wading in a pool. Justify your explanation with a ray diagram showing the path of rays from the feet to the eye of an observer who is out of the water.

10. Explain why an oar that is partially submerged in water appears bent.

1.4 Total Internal Reflection

11. A ring with a colorless gemstone is dropped into water.
The gemstone becomes invisible when submerged. Can it be a diamond? Explain.

12. The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the refractive index of air is lower for air at higher temperatures, explain how mirages can be formed.

13. How can you use total internal reflection to estimate the index of refraction of a medium?

1.5 Dispersion

14. Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles, perhaps referring to that shown below. Some of us have seen the formation of a double rainbow; is it physically possible to observe a triple rainbow?

15. A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption. Explain how it can sparkle with flashes of brilliant color when illuminated by white light.

1.6 Huygens’s Principle

16. How do wave effects depend on the size of the object with which the wave interacts? For example, why does sound bend around the corner of a building while light does not?

17. Does Huygens’s principle apply to all types of waves?

18. If diffraction is observed for some phenomenon, it is evidence that the phenomenon is a wave. Does the reverse hold true? That is, if diffraction is not observed, does that mean the phenomenon is not a wave?

1.7 Polarization

19. Can a sound wave in air be polarized? Explain.

20. No light passes through two perfect polarizing filters with perpendicular axes. However, if a third polarizing filter is placed between the original two, some light can pass. Why is this? Under what circumstances does most of the light pass?

21. Explain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.

22. When particles scattering light are much smaller than its wavelength, the amount of scattering is proportional to \(\frac{1}{\lambda^4} \). Does this mean there is more scattering for small \(\lambda \) than large \(\lambda \)? How does this relate to the fact that the sky is blue?

23. Using the information given in the preceding question, explain why sunsets are red.

24. When light is reflected at Brewster’s angle from a smooth surface, it is 100% polarized parallel to the surface. Part of the light will be refracted into the surface. Describe how you would do an experiment to determine the polarization of the refracted light. What direction would you expect the polarization to have and would you expect it to be 100%?

25. If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work very well. Why not?

PROBLEMS

1.1 The Propagation of Light

26. What is the speed of light in water? In glycerine?

27. What is the speed of light in air? In crown glass?

28. Calculate the index of refraction for a medium in which the speed of light is \(2.012 \times 10^8 \text{ m/s} \), and identify the most likely substance based on Table 1.1.

29. In what substance in Table 1.1 is the speed of light \(2.290 \times 10^8 \text{ m/s} \)?
30. There was a major collision of an asteroid with the Moon in medieval times. It was described by monks at Canterbury Cathedral in England as a red glow on and around the Moon. How long after the asteroid hit the Moon, which is 3.84×10^5 km away, would the light first arrive on Earth?

31. Components of some computers communicate with each other through optical fibers having an index of refraction $n = 1.55$. What time in nanoseconds is required for a signal to travel 0.200 m through such a fiber?

32. Compare the time it takes for light to travel 1000 m on the surface of Earth and in outer space.

33. How far does light travel underwater during a time interval of 1.50×10^{-6} s?

1.2 The Law of Reflection

34. Suppose a man stands in front of a mirror as shown below. His eyes are 1.65 m above the floor and the top of his head is 0.13 m higher. Find the height above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet. How is this distance related to the man’s height?

35. Show that when light reflects from two mirrors that meet each other at a right angle, the outgoing ray is parallel to the incoming ray, as illustrated below.

36. On the Moon’s surface, lunar astronauts placed a corner reflector, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. What percent correction is needed to account for the delay in time due to the slowing of light in Earth’s atmosphere? Assume the distance to the Moon is precisely 3.84×10^8 m and Earth’s atmosphere (which varies in density with altitude) is equivalent to a layer 30.0 km thick with a constant index of refraction $n = 1.000293$.

37. A flat mirror is neither converging nor diverging. To prove this, consider two rays originating from the same point and diverging at an angle θ (see below). Show that after striking a plane mirror, the angle between their directions remains θ.

1.3 Refraction

Unless otherwise specified, for problems 1 through 10, the indices of refraction of glass and water should be taken to be 1.50 and 1.333, respectively.

38. A light beam in air has an angle of incidence of 35° at the surface of a glass plate. What are the angles of reflection and refraction?
39. A light beam in air is incident on the surface of a pond, making an angle of 20° with respect to the surface. What are the angles of reflection and refraction?

40. When a light ray crosses from water into glass, it emerges at an angle of 30° with respect to the normal of the interface. What is its angle of incidence?

41. A pencil flashlight submerged in water sends a light beam toward the surface at an angle of incidence of 30°. What is the angle of refraction in air?

42. Light rays from the Sun make a 30° angle to the vertical when seen from below the surface of a body of water. At what angle above the horizon is the Sun?

43. The path of a light beam in air goes from an angle of incidence of 35° to an angle of refraction of 22° when it enters a rectangular block of plastic. What is the index of refraction of the plastic?

44. A scuba diver training in a pool looks at his instructor as shown below. What angle does the ray from the instructor’s face make with the perpendicular to the water at the point where the ray enters? The angle between the ray in the water and the perpendicular to the water is 25.0°.

45. (a) Using information in the preceding problem, find the height of the instructor’s head above the water, noting that you will first have to calculate the angle of incidence. (b) Find the apparent depth of the diver’s head below water as seen by the instructor.

1.4 Total Internal Reflection

46. Verify that the critical angle for light going from water to air is 48.6°, as discussed at the end of Example 1.4, regarding the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air.

47. (a) At the end of Example 1.4, it was stated that the critical angle for light going from diamond to air is 24.4°. Verify this. (b) What is the critical angle for light going from zircon to air?

48. An optical fiber uses flint glass clad with crown glass. What is the critical angle?

49. At what minimum angle will you get total internal reflection of light traveling in water and reflected from ice?

50. Suppose you are using total internal reflection to make an efficient corner reflector. If there is air outside and the incident angle is 45.0°, what must be the minimum index of refraction of the material from which the reflector is made?

51. You can determine the index of refraction of a substance by determining its critical angle. (a) What is the index of refraction of a substance that has a critical angle of 68.4° when submerged in water? What is the substance, based on Table 1.1? (b) What would the critical angle be for this substance in air?

52. A ray of light, emitted beneath the surface of an unknown liquid with air above it, undergoes total internal reflection as shown below. What is the index of refraction for the liquid and its likely identification?

53. Light rays fall normally on the vertical surface of the glass prism (n = 1.50) shown below. (a) What is the largest value for ϕ such that the ray is totally reflected at the slanted face? (b) Repeat the calculation of part (a) if the prism is immersed in water.
1.5 Dispersion

54. (a) What is the ratio of the speed of red light to violet light in diamond, based on Table 1.2? (b) What is this ratio in polystyrene? (c) Which is more dispersive?

55. A beam of white light goes from air into water at an incident angle of 75.0°. At what angles are the red (660 nm) and violet (410 nm) parts of the light refracted?

56. By how much do the critical angles for red (660 nm) and violet (410 nm) light differ in a diamond surrounded by air?

57. (a) A narrow beam of light containing yellow (580 nm) and green (550 nm) wavelengths goes from polystyrene to air, striking the surface at a 30.0° incident angle. What is the angle between the colors when they emerge? (b) How far would they have to travel to be separated by 1.00 mm?

58. A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 60.0° incident angle. What is the angle between the two colors in water?

59. A ray of 610-nm light goes from air into fused quartz at an incident angle of 55.0°. At what incident angle must 470 nm light enter flint glass to have the same angle of refraction?

60. A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00-cm-thick flat piece of crown glass and back to air again. The beam strikes at a 30.0° incident angle. (a) At what angles do the two colors emerge? (b) By what distance are the red and blue separated when they emerge?

61. A narrow beam of white light enters a prism made of crown glass at a 45.0° incident angle, as shown below. At what angles, \(\theta_R \) and \(\theta_V \), do the red (660 nm) and violet (410 nm) components of the light emerge from the prism?

1.7 Polarization

62. What angle is needed between the direction of polarized light and the axis of a polarizing filter to cut its intensity in half?

63. The angle between the axes of two polarizing filters is 45.0°. By how much does the second filter reduce the intensity of the light coming through the first?

64. Two polarizing sheets \(P_1 \) and \(P_2 \) are placed together with their transmission axes oriented at an angle \(\theta \) to each other. What is \(\theta \) when only 25% of the maximum transmitted light intensity passes through them?

65. Suppose that in the preceding problem the light incident on \(P_1 \) is unpolarized. At the determined value of \(\theta \), what fraction of the incident light passes through the combination?

66. If you have completely polarized light of intensity 150 W/m², what will its intensity be after passing through a polarizing filter with its axis at an 89.0° angle to the light’s polarization direction?

67. What angle would the axis of a polarizing filter need to make with the direction of polarized light of intensity 1.00 kW/m² to reduce the intensity to 10.0 W/m²?

68. At the end of Example 1.7, it was stated that the intensity of polarized light is reduced to 90.0% of its original value by passing through a polarizing filter with its axis at an angle of 18.4° to the direction of polarization. Verify this statement.

69. Show that if you have three polarizing filters, with the second at an angle of 45.0° to the first and the third at an angle of 90.0° to the first, the intensity of light passed by
the first will be reduced to 25.0% of its value. (This is in contrast to having only the first and third, which reduces the intensity to zero, so that placing the second between them increases the intensity of the transmitted light.)

70. Three polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of the intensity of an incident unpolarized beam is transmitted by the combination?

71. In order to rotate the polarization axis of a beam of linearly polarized light by 90.0°, a student places sheets \(P_1 \) and \(P_2 \) with their transmission axes at 45.0° and 90.0°, respectively, to the beam’s axis of polarization. (a) What fraction of the incident light passes through \(P_1 \) and (b) through the combination? (c) Repeat your calculations for part (b) for transmission-axis angles of 30.0° and 90.0°, respectively.

72. It is found that when light traveling in water falls on a plastic block, Brewster’s angle is 50.0°. What is the refractive index of the plastic?

73. At what angle will light reflected from diamond be completely polarized?

74. What is Brewster’s angle for light traveling in water that is reflected from crown glass?

75. A scuba diver sees light reflected from the water’s surface. At what angle relative to the water’s surface will this light be completely polarized?

ADDITIONAL PROBLEMS

76. From his measurements, Roemer estimated that it took 22 min for light to travel a distance equal to the diameter of Earth’s orbit around the Sun. (a) Use this estimate along with the known diameter of Earth’s orbit to obtain a rough value of the speed of light. (b) Light actually takes 16.5 min to travel this distance. Use this time to calculate the speed of light.

77. Cornu performed Fizeau’s measurement of the speed of light using a wheel of diameter 4.00 cm that contained 180 teeth. The distance from the wheel to the mirror was 22.9 km. Assuming he measured the speed of light accurately, what was the angular velocity of the wheel?

78. Suppose you have an unknown clear substance immersed in water, and you wish to identify it by finding its index of refraction. You arrange to have a beam of light enter it at an angle of 45.0°, and you observe the angle of refraction to be 40.3°. What is the index of refraction of the substance and its likely identity?

79. Shown below is a ray of light going from air through crown glass into water, such as going into a fish tank. Calculate the amount the ray is displaced by the glass \(\Delta x \), given that the incident angle is 40.0° and the glass is 1.00 cm thick.

80. Considering the previous problem, show that \(\theta_3 \) is the same as it would be if the second medium were not present.

81. At what angle is light inside crown glass completely polarized when reflected from water, as in a fish tank?

82. Light reflected at 55.6° from a window is completely polarized. What is the window’s index of refraction and the likely substance of which it is made?

83. (a) Light reflected at 62.5° from a gemstone in a ring is completely polarized. Can the gem be a diamond? (b) At what angle would the light be completely polarized if the
gem was in water?

84. If \(\theta_b \) is Brewster's angle for light reflected from the top of an interface between two substances, and \(\theta_b' \) is Brewster's angle for light reflected from below, prove that \(\theta_b + \theta_b' = 90.0^\circ \).

85. **Unreasonable results** Suppose light travels from water to another substance, with an angle of incidence of \(10.0^\circ \) and an angle of refraction of \(14.9^\circ \). (a) What is the index of refraction of the other substance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

86. **Unreasonable results** Light traveling from water to a gemstone strikes the surface at an angle of \(80.0^\circ \) and has an angle of refraction of \(15.2^\circ \). (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

87. If a polarizing filter reduces the intensity of polarized light to 50.0% of its original value, by how much are the electric and magnetic fields reduced?

88. Suppose you put on two pairs of polarizing sunglasses with their axes at an angle of \(15.0^\circ \). How much longer will it take the light to deposit a given amount of energy in your eye compared with a single pair of sunglasses? Assume the lenses are clear except for their polarizing characteristics.

89. (a) On a day when the intensity of sunlight is 1.00 kW/m\(^2\), a circular lens 0.200 m in diameter focuses light onto water in a black beaker. Two polarizing sheets of plastic are placed in front of the lens with their axes at an angle of \(20.0^\circ \). Assuming the sunlight is unpolarized and the polarizers are 100% efficient, what is the initial rate of heating of the water in \(^\circ \text{C/s} \), assuming it is 80.0% absorbed? The aluminum beaker has a mass of 30.0 grams and contains 250 grams of water. (b) Do the polarizing filters get hot? Explain.

CHALLENGE PROBLEMS

90. Light shows staged with lasers use moving mirrors to swing beams and create colorful effects. Show that a light ray reflected from a mirror changes direction by \(2 \theta \) when the mirror is rotated by an angle \(\theta \).

91. Consider sunlight entering Earth's atmosphere at sunrise and sunset—that is, at a \(90.0^\circ \) incident angle. Taking the boundary between nearly empty space and the atmosphere to be sudden, calculate the angle of refraction for sunlight. This lengthens the time the Sun appears to be above the horizon, both at sunrise and sunset. Now construct a problem in which you determine the angle of refraction for different models of the atmosphere, such as various layers of varying density. Your instructor may wish to guide you on the level of complexity to consider and on how the index of refraction varies with air density.

92. A light ray entering an optical fiber surrounded by air is first refracted and then reflected as shown below. Show that if the fiber is made from crown glass, any incident ray will be totally internally reflected.

93. A light ray falls on the left face of a prism (see below) at the angle of incidence \(\theta \) for which the emerging beam has an angle of refraction \(\theta \) at the right face. Show that the index of refraction \(n \) of the glass prism is given by

\[
n = \frac{\sin \frac{1}{2}(\alpha + \phi)}{\sin \frac{1}{2}\phi}
\]

where \(\phi \) is the vertex angle of the prism and \(\alpha \) is the angle through which the beam has been deviated. If \(\alpha = 37.0^\circ \) and the base angles of the prism are each \(50.0^\circ \), what is \(n \)?

94. If the apex angle \(\phi \) in the previous problem is \(20.0^\circ \) and \(n = 1.50 \), what is the value of \(\alpha \)?

95. The light incident on polarizing sheet \(P_1 \) is linearly
polarized at an angle of 30.0° with respect to the
transmission axis of \(P_1 \). Sheet \(P_2 \) is placed so that its
axis is parallel to the polarization axis of the incident light,
that is, also at 30.0° with respect to \(P_1 \). (a) What fraction
of the incident light passes through \(P_1 \)? (b) What fraction
of the incident light is passed by the combination? (c)
By rotating \(P_2 \), a maximum in transmitted intensity is
obtained. What is the ratio of this maximum intensity to
the intensity of transmitted light when \(P_2 \) is at 30.0° with
respect to \(P_1 \)?

96. Prove that if \(I \) is the intensity of light transmitted by
two polarizing filters with axes at an angle \(\theta \) and \(I' \) is
the intensity when the axes are at an angle 90.0° - \(\theta \),
then \(I + I' = I_0 \), the original intensity. (Hint: Use the
trigonometric identities \(\cos 90.0° - \theta = \sin \theta \) and
\(\cos^2 \theta + \sin^2 \theta = 1 \).)