
13 | ELECTROMAGNETIC
INDUCTION

Figure 13.1 The black strip found on the back of credit cards and driver’s licenses is a very thin layer of magnetic material
with information stored on it. Reading and writing the information on the credit card is done with a swiping motion. The physical
reason why this is necessary is called electromagnetic induction and is discussed in this chapter. (credit: modification of work by
Jane Whitney)
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Introduction
We have been considering electric fields created by fixed charge distributions and magnetic fields produced by constant
currents, but electromagnetic phenomena are not restricted to these stationary situations. Most of the interesting applications
of electromagnetism are, in fact, time-dependent. To investigate some of these applications, we now remove the time-
independent assumption that we have been making and allow the fields to vary with time. In this and the next several
chapters, you will see a wonderful symmetry in the behavior exhibited by time-varying electric and magnetic fields.
Mathematically, this symmetry is expressed by an additional term in Ampère’s law and by another key equation of
electromagnetism called Faraday’s law. We also discuss how moving a wire through a magnetic field produces an emf or
voltage. Lastly, we describe applications of these principles, such as the card reader shown above.
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13.1 | Faraday’s Law

Learning Objectives

By the end of this section, you will be able to:

• Determine the magnetic flux through a surface, knowing the strength of the magnetic field, the
surface area, and the angle between the normal to the surface and the magnetic field

• Use Faraday’s law to determine the magnitude of induced emf in a closed loop due to changing
magnetic flux through the loop

The first productive experiments concerning the effects of time-varying magnetic fields were performed by Michael Faraday
in 1831. One of his early experiments is represented in Figure 13.2. An emf is induced when the magnetic field in the
coil is changed by pushing a bar magnet into or out of the coil. Emfs of opposite signs are produced by motion in opposite
directions, and the directions of emfs are also reversed by reversing poles. The same results are produced if the coil is moved
rather than the magnet—it is the relative motion that is important. The faster the motion, the greater the emf, and there is no
emf when the magnet is stationary relative to the coil.

Figure 13.2 Movement of a magnet relative to a coil produces emfs as shown (a–d). The same emfs are produced if the coil
is moved relative to the magnet. This short-lived emf is only present during the motion. The greater the speed, the greater the
magnitude of the emf, and the emf is zero when there is no motion, as shown in (e).

Faraday also discovered that a similar effect can be produced using two circuits—a changing current in one circuit induces
a current in a second, nearby circuit. For example, when the switch is closed in circuit 1 of Figure 13.3(a), the ammeter
needle of circuit 2 momentarily deflects, indicating that a short-lived current surge has been induced in that circuit. The
ammeter needle quickly returns to its original position, where it remains. However, if the switch of circuit 1 is now suddenly
opened, another short-lived current surge in the direction opposite from before is observed in circuit 2.
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Figure 13.3 (a) Closing the switch of circuit 1 produces a short-lived current surge in circuit 2. (b) If the switch remains
closed, no current is observed in circuit 2. (c) Opening the switch again produces a short-lived current in circuit 2 but in the
opposite direction from before.

Faraday realized that in both experiments, a current flowed in the circuit containing the ammeter only when the magnetic
field in the region occupied by that circuit was changing. As the magnet of the figure was moved, the strength of its
magnetic field at the loop changed; and when the current in circuit 1 was turned on or off, the strength of its magnetic field
at circuit 2 changed. Faraday was eventually able to interpret these and all other experiments involving magnetic fields that
vary with time in terms of the following law:

Faraday’s Law

The emf ε induced is the negative change in the magnetic flux Φm per unit time. Any change in the magnetic field

or change in orientation of the area of the coil with respect to the magnetic field induces a voltage (emf).

The magnetic flux is a measurement of the amount of magnetic field lines through a given surface area, as seen in Figure
13.4. This definition is similar to the electric flux studied earlier. This means that if we have

(13.1)Φm = ∫
S

B→ · n̂dA,

then the induced emf or the voltage generated by a conductor or coil moving in a magnetic field is

(13.2)ε = − d
dt∫

S
B→ · n̂dA = − dΦm

dt .

The negative sign describes the direction in which the induced emf drives current around a circuit. However, that direction
is most easily determined with a rule known as Lenz’s law, which we will discuss shortly.
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Figure 13.4 The magnetic flux is the amount of magnetic
field lines cutting through a surface area A defined by the unit

area vector n̂ . If the angle between the unit area n̂ and

magnetic field vector B→ are parallel or antiparallel, as shown

in the diagram, the magnetic flux is the highest possible value
given the values of area and magnetic field.

Part (a) of Figure 13.5 depicts a circuit and an arbitrary surface S that it bounds. Notice that S is an open surface. It can
be shown that any open surface bounded by the circuit in question can be used to evaluate Φm. For example, Φm is the

same for the various surfaces S1, S2, … of part (b) of the figure.

Figure 13.5 (a) A circuit bounding an arbitrary open surface S. The planar area bounded by the circuit is not
part of S. (b) Three arbitrary open surfaces bounded by the same circuit. The value of Φm is the same for all

these surfaces.

The SI unit for magnetic flux is the weber (Wb),

1 Wb = 1 T · m2.

Occasionally, the magnetic field unit is expressed as webers per square meter ( Wb/m2 ) instead of teslas, based on this

definition. In many practical applications, the circuit of interest consists of a number N of tightly wound turns (see Figure
13.6). Each turn experiences the same magnetic flux. Therefore, the net magnetic flux through the circuits is N times the
flux through one turn, and Faraday’s law is written as
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(13.3)ε = − d
dt(NΦm) = −N dΦm

dt .

Example 13.1

A Square Coil in a Changing Magnetic Field

The square coil of Figure 13.6 has sides l = 0.25 m long and is tightly wound with N = 200 turns of wire.

The resistance of the coil is R = 5.0 Ω. The coil is placed in a spatially uniform magnetic field that is directed

perpendicular to the face of the coil and whose magnitude is decreasing at a rate dB/dt = −0.040 T/s. (a) What

is the magnitude of the emf induced in the coil? (b) What is the magnitude of the current circulating through the
coil?

Figure 13.6 A square coil with N turns of wire with uniform

magnetic field B→ directed in the downward direction,

perpendicular to the coil.

Strategy

The area vector, or n̂ direction, is perpendicular to area covering the loop. We will choose this to be pointing

downward so that B→ is parallel to n̂ and that the flux turns into multiplication of magnetic field times area.

The area of the loop is not changing in time, so it can be factored out of the time derivative, leaving the magnetic
field as the only quantity varying in time. Lastly, we can apply Ohm’s law once we know the induced emf to find
the current in the loop.

Solution
a. The flux through one turn is

Φm = BA = Bl2,

so we can calculate the magnitude of the emf from Faraday’s law. The sign of the emf will be discussed
in the next section, on Lenz’s law:

|ε| = |−N dΦm
dt | = Nl2 dB

dt
= (200)(0.25 m)2(0.040 T/s) = 0.50 V.

Chapter 13 | Electromagnetic Induction 585



13.1

b. The magnitude of the current induced in the coil is

I = ε
R = 0.50 V

5.0 Ω = 0.10 A.

Significance

If the area of the loop were changing in time, we would not be able to pull it out of the time derivative. Since the
loop is a closed path, the result of this current would be a small amount of heating of the wires until the magnetic
field stops changing. This may increase the area of the loop slightly as the wires are heated.

Check Your Understanding A closely wound coil has a radius of 4.0 cm, 50 turns, and a total
resistance of 40 Ω . At what rate must a magnetic field perpendicular to the face of the coil change in order to

produce Joule heating in the coil at a rate of 2.0 mW?

13.2 | Lenz's Law

Learning Objectives

By the end of this section, you will be able to:

• Use Lenz’s law to determine the direction of induced emf whenever a magnetic flux changes

• Use Faraday’s law with Lenz’s law to determine the induced emf in a coil and in a solenoid

The direction in which the induced emf drives current around a wire loop can be found through the negative sign.
However, it is usually easier to determine this direction with Lenz’s law, named in honor of its discoverer, Heinrich Lenz
(1804–1865). (Faraday also discovered this law, independently of Lenz.) We state Lenz’s law as follows:

Lenz’s Law

The direction of the induced emf drives current around a wire loop to always oppose the change in magnetic flux that
causes the emf.

Lenz’s law can also be considered in terms of conservation of energy. If pushing a magnet into a coil causes current, the
energy in that current must have come from somewhere. If the induced current causes a magnetic field opposing the increase
in field of the magnet we pushed in, then the situation is clear. We pushed a magnet against a field and did work on the
system, and that showed up as current. If it were not the case that the induced field opposes the change in the flux, the
magnet would be pulled in produce a current without anything having done work. Electric potential energy would have been
created, violating the conservation of energy.

To determine an induced emf ε , you first calculate the magnetic flux Φm and then obtain dΦm/dt. The magnitude of ε
is given by ε = |dΦm /dt|. Finally, you can apply Lenz’s law to determine the sense of ε . This will be developed through

examples that illustrate the following problem-solving strategy.

Problem-Solving Strategy: Lenz’s Law

To use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs:

1. Make a sketch of the situation for use in visualizing and recording directions.

2. Determine the direction of the applied magnetic field B→ .

3. Determine whether its magnetic flux is increasing or decreasing.

4. Now determine the direction of the induced magnetic field B→ . The induced magnetic field tries to reinforce a
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magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic
field adds or subtracts to the applied magnetic field, depending on the change in magnetic flux.

5. Use right-hand rule 2 (RHR-2; see Magnetic Forces and Fields) to determine the direction of the induced

current I that is responsible for the induced magnetic field B→ .

6. The direction (or polarity) of the induced emf can now drive a conventional current in this direction.

Let’s apply Lenz’s law to the system of Figure 13.7(a). We designate the “front” of the closed conducting loop as the
region containing the approaching bar magnet, and the “back” of the loop as the other region. As the north pole of the
magnet moves toward the loop, the flux through the loop due to the field of the magnet increases because the strength
of field lines directed from the front to the back of the loop is increasing. A current is therefore induced in the loop. By
Lenz’s law, the direction of the induced current must be such that its own magnetic field is directed in a way to oppose the
changing flux caused by the field of the approaching magnet. Hence, the induced current circulates so that its magnetic field
lines through the loop are directed from the back to the front of the loop. By RHR-2, place your thumb pointing against
the magnetic field lines, which is toward the bar magnet. Your fingers wrap in a counterclockwise direction as viewed
from the bar magnet. Alternatively, we can determine the direction of the induced current by treating the current loop as an
electromagnet that opposes the approach of the north pole of the bar magnet. This occurs when the induced current flows as
shown, for then the face of the loop nearer the approaching magnet is also a north pole.

Figure 13.7 The change in magnetic flux caused by the approaching magnet induces a
current in the loop. (a) An approaching north pole induces a counterclockwise current with
respect to the bar magnet. (b) An approaching south pole induces a clockwise current with
respect to the bar magnet.

Part (b) of the figure shows the south pole of a magnet moving toward a conducting loop. In this case, the flux through the
loop due to the field of the magnet increases because the number of field lines directed from the back to the front of the loop
is increasing. To oppose this change, a current is induced in the loop whose field lines through the loop are directed from
the front to the back. Equivalently, we can say that the current flows in a direction so that the face of the loop nearer the
approaching magnet is a south pole, which then repels the approaching south pole of the magnet. By RHR-2, your thumb
points away from the bar magnet. Your fingers wrap in a clockwise fashion, which is the direction of the induced current.

Another example illustrating the use of Lenz’s law is shown in Figure 13.8. When the switch is opened, the decrease in
current through the solenoid causes a decrease in magnetic flux through its coils, which induces an emf in the solenoid.
This emf must oppose the change (the termination of the current) causing it. Consequently, the induced emf has the polarity
shown and drives in the direction of the original current. This may generate an arc across the terminals of the switch as it is
opened.
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13.3

Figure 13.8 (a) A solenoid connected to a source of emf. (b) Opening switch S terminates the current, which in turn induces
an emf in the solenoid. (c) A potential difference between the ends of the sharply pointed rods is produced by inducing an emf
in a coil. This potential difference is large enough to produce an arc between the sharp points.

Check Your Understanding Find the direction of the induced current in the wire loop shown below as
the magnet enters, passes through, and leaves the loop.

Check Your Understanding Verify the directions of the induced currents in Figure 13.3.

Example 13.2

A Circular Coil in a Changing Magnetic Field

A magnetic field B→ is directed outward perpendicular to the plane of a circular coil of radius r = 0.50 m
(Figure 13.9). The field is cylindrically symmetrical with respect to the center of the coil, and its magnitude

decays exponentially according to B = (1.5T)e−(5.0s−1)t, where B is in teslas and t is in seconds. (a) Calculate

the emf induced in the coil at the times t1 = 0, t2 = 5.0 × 10−2 s, and t3 = 1.0 s. (b) Determine the current

in the coil at these three times if its resistance is 10 Ω.

Figure 13.9 A circular coil in a decreasing magnetic field.
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Strategy

Since the magnetic field is perpendicular to the plane of the coil and constant over each spot in the coil, the dot

product of the magnetic field B→ and normal to the area unit vector n̂ turns into a multiplication. The magnetic

field can be pulled out of the integration, leaving the flux as the product of the magnetic field times area. We
need to take the time derivative of the exponential function to calculate the emf using Faraday’s law. Then we use
Ohm’s law to calculate the current.

Solution

a. Since B→ is perpendicular to the plane of the coil, the magnetic flux is given by

Φm = Bπr2 = (1.5e−5.0t T)π(0.50 m)2

= 1.2e−(5.0s−1)t Wb.

From Faraday’s law, the magnitude of the induced emf is

ε = |dΦm
dt | = | d

dt(1.2e−(5.0s−1)t Wb)| = 6.0 e−(5.0s−1)t V.

Since B→ is directed out of the page and is decreasing, the induced current must flow counterclockwise

when viewed from above so that the magnetic field it produces through the coil also points out of the
page. For all three times, the sense of ε is counterclockwise; its magnitudes are

ε(t1) = 6.0 V; ε(t2) = 4.7 V; ε(t3) = 0.040 V.
b. From Ohm’s law, the respective currents are

I(t1) = ε(t1)
R = 6.0 V

10 Ω = 0.60 A;

I(t2) = 4.7 V
10 Ω = 0.47 A;

and

I(t3) = 0.040 V
10 Ω = 4.0 × 10−3 A.

Significance

An emf voltage is created by a changing magnetic flux over time. If we know how the magnetic field varies with
time over a constant area, we can take its time derivative to calculate the induced emf.

Example 13.3

Changing Magnetic Field Inside a Solenoid

The current through the windings of a solenoid with n = 2000 turns per meter is changing at a rate

dI/dt = 3.0 A/s. (See Sources of Magnetic Fields for a discussion of solenoids.) The solenoid is 50-cm long

and has a cross-sectional diameter of 3.0 cm. A small coil consisting of N = 20 closely wound turns wrapped in

a circle of diameter 1.0 cm is placed in the middle of the solenoid such that the plane of the coil is perpendicular
to the central axis of the solenoid. Assuming that the infinite-solenoid approximation is valid at the location of
the small coil, determine the magnitude of the emf induced in the coil.

Strategy

The magnetic field in the middle of the solenoid is a uniform value of µ0 nI. This field is producing a maximum
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magnetic flux through the coil as it is directed along the length of the solenoid. Therefore, the magnetic flux
through the coil is the product of the solenoid’s magnetic field times the area of the coil. Faraday’s law involves
a time derivative of the magnetic flux. The only quantity varying in time is the current, the rest can be pulled out
of the time derivative. Lastly, we include the number of turns in the coil to determine the induced emf in the coil.

Solution

Since the field of the solenoid is given by B = µ0 nI, the flux through each turn of the small coil is

Φm = µ0 nI⎛⎝
πd2

4
⎞
⎠,

where d is the diameter of the coil. Now from Faraday’s law, the magnitude of the emf induced in the coil is

ε = |N dΦm
dt | = |Nµ0 nπd2

4
dI
dt |

= 20⎛
⎝4π × 10−7 T · m/s⎞

⎠
⎛
⎝2000 m-1⎞

⎠
π(0.010 m)2

4 (3.0 A/s)

= 1.2 × 10−5 V.

Significance

When the current is turned on in a vertical solenoid, as shown in Figure 13.10, the ring has an induced emf from
the solenoid’s changing magnetic flux that opposes the change. The result is that the ring is fired vertically into
the air.

Figure 13.10 The jumping ring. When a current is turned on
in the vertical solenoid, a current is induced in the metal ring.
The stray field produced by the solenoid causes the ring to jump
off the solenoid.

Visit this website (https://openstaxcollege.org/l/21flashmagind) for a demonstration of the jumping ring
from MIT.
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13.3 | Motional Emf

Learning Objectives

By the end of this section, you will be able to:

• Determine the magnitude of an induced emf in a wire moving at a constant speed through a
magnetic field

• Discuss examples that use motional emf, such as a rail gun and a tethered satellite

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and
the orientation of the field with the surface area. If any of these quantities varies, a corresponding variation in magnetic flux
occurs. So far, we’ve only considered flux changes due to a changing field. Now we look at another possibility: a changing
area through which the field lines pass including a change in the orientation of the area.

Two examples of this type of flux change are represented in Figure 13.11. In part (a), the flux through the rectangular loop
increases as it moves into the magnetic field, and in part (b), the flux through the rotating coil varies with the angle θ .

Figure 13.11 (a) Magnetic flux changes as a loop moves into a magnetic field; (b) magnetic flux changes
as a loop rotates in a magnetic field.

It’s interesting to note that what we perceive as the cause of a particular flux change actually depends on the frame of
reference we choose. For example, if you are at rest relative to the moving coils of Figure 13.11, you would see the flux
vary because of a changing magnetic field—in part (a), the field moves from left to right in your reference frame, and in
part (b), the field is rotating. It is often possible to describe a flux change through a coil that is moving in one particular
reference frame in terms of a changing magnetic field in a second frame, where the coil is stationary. However, reference-
frame questions related to magnetic flux are beyond the level of this textbook. We’ll avoid such complexities by always
working in a frame at rest relative to the laboratory and explain flux variations as due to either a changing field or a changing
area.

Now let’s look at a conducting rod pulled in a circuit, changing magnetic flux. The area enclosed by the circuit ‘MNOP’ of
Figure 13.12 is lx and is perpendicular to the magnetic field, so we can simplify the integration of Equation 13.1 into a
multiplication of magnetic field and area. The magnetic flux through the open surface is therefore

(13.4)Φm = Blx.

Since B and l are constant and the velocity of the rod is v = dx/dt, we can now restate Faraday’s law, Equation 13.2,

for the magnitude of the emf in terms of the moving conducting rod as
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(13.5)ε = dΦm
dt = Bldx

dt = Blv.

The current induced in the circuit is the emf divided by the resistance or

I = Blv
R .

Furthermore, the direction of the induced emf satisfies Lenz’s law, as you can verify by inspection of the figure.

This calculation of motionally induced emf is not restricted to a rod moving on conducting rails. With F→ = q v→ × B→

as the starting point, it can be shown that ε = −dΦm /dt holds for any change in flux caused by the motion of a conductor.

We saw in Faraday’s Law that the emf induced by a time-varying magnetic field obeys this same relationship, which is
Faraday’s law. Thus Faraday’s law holds for all flux changes, whether they are produced by a changing magnetic field, by
motion, or by a combination of the two.

Figure 13.12 A conducting rod is pushed to the right at
constant velocity. The resulting change in the magnetic flux
induces a current in the circuit.

From an energy perspective, F→ a produces power Fa v, and the resistor dissipates power I 2 R . Since the rod is moving

at constant velocity, the applied force Fa must balance the magnetic force Fm = IlB on the rod when it is carrying the

induced current I. Thus the power produced is

(13.6)Fa v = IlBv = Blv
R · lBv = l2 B2 v2

R .

The power dissipated is

(13.7)
P = I 2 R = ⎛

⎝
Blv
R

⎞
⎠
2

R = l2 B2 v2

R .

In satisfying the principle of energy conservation, the produced and dissipated powers are equal.

This principle can be seen in the operation of a rail gun. A rail gun is an electromagnetic projectile launcher that uses an
apparatus similar to Figure 13.12 and is shown in schematic form in Figure 13.13. The conducting rod is replaced with a
projectile or weapon to be fired. So far, we’ve only heard about how motion causes an emf. In a rail gun, the optimal shutting
off/ramping down of a magnetic field decreases the flux in between the rails, causing a current to flow in the rod (armature)
that holds the projectile. This current through the armature experiences a magnetic force and is propelled forward. Rail
guns, however, are not used widely in the military due to the high cost of production and high currents: Nearly one million
amps is required to produce enough energy for a rail gun to be an effective weapon.
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Figure 13.13 Current through two rails drives a conductive projectile forward by the magnetic
force created.

We can calculate a motionally induced emf with Faraday’s law even when an actual closed circuit is not present. We
simply imagine an enclosed area whose boundary includes the moving conductor, calculate Φm , and then find the emf

from Faraday’s law. For example, we can let the moving rod of Figure 13.14 be one side of the imaginary rectangular area
represented by the dashed lines. The area of the rectangle is lx, so the magnetic flux through it is Φm = Blx. Differentiating

this equation, we obtain

(13.8)dΦm
dt = Bldx

dt = Blv,

which is identical to the potential difference between the ends of the rod that we determined earlier.

Figure 13.14 With the imaginary rectangle shown, we can
use Faraday’s law to calculate the induced emf in the moving
rod.

Motional emfs in Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along metal rods,
such as a screwdriver, during ordinary motions. For example, a simple calculation of the motional emf of a 1.0-m rod
moving at 3.0 m/s perpendicular to the Earth’s field gives

emf = Bℓv = (5.0 × 10−5 T)(1.0 m)(3.0 m/s) = 150µV.

This small value is consistent with experience. There is a spectacular exception, however. In 1992 and 1996, attempts were
made with the space shuttle to create large motional emfs. The tethered satellite was to be let out on a 20-km length of
wire, as shown in Figure 13.15, to create a 5-kV emf by moving at orbital speed through Earth’s field. This emf could
be used to convert some of the shuttle’s kinetic and potential energy into electrical energy if a complete circuit could be
made. To complete the circuit, the stationary ionosphere was to supply a return path through which current could flow. (The
ionosphere is the rarefied and partially ionized atmosphere at orbital altitudes. It conducts because of the ionization. The
ionosphere serves the same function as the stationary rails and connecting resistor in Figure 13.13, without which there
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would not be a complete circuit.) Drag on the current in the cable due to the magnetic force F = IℓBsin θ does the work

that reduces the shuttle’s kinetic and potential energy, and allows it to be converted into electrical energy. Both tests were
unsuccessful. In the first, the cable hung up and could only be extended a couple of hundred meters; in the second, the cable
broke when almost fully extended. Example 13.4 indicates feasibility in principle.

Figure 13.15 Motional emf as electrical power conversion for
the space shuttle was the motivation for the tethered satellite
experiment. A 5-kV emf was predicted to be induced in the
20-km tether while moving at orbital speed in Earth’s magnetic
field. The circuit is completed by a return path through the
stationary ionosphere.

Example 13.4

Calculating the Large Motional Emf of an Object in Orbit

Calculate the motional emf induced along a 20.0-km conductor moving at an orbital speed of 7.80 km/s

perpendicular to Earth’s 5.00 × 10−5 T magnetic field.

Strategy

This is a great example of using the equation motional ε = Bℓv.

Solution

Entering the given values into ε = Bℓv gives

ε = Bℓv
= (5.00 × 10−5 T)(2.00 × 104 m)(7.80 × 103 m/s)
= 7.80 × 103 V.

Significance

The value obtained is greater than the 5-kV measured voltage for the shuttle experiment, since the actual orbital
motion of the tether is not perpendicular to Earth’s field. The 7.80-kV value is the maximum emf obtained when
θ = 90° and so sin θ = 1.
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Example 13.5

A Metal Rod Rotating in a Magnetic Field

Part (a) of Figure 13.16 shows a metal rod OS that is rotating in a horizontal plane around point O. The rod

slides along a wire that forms a circular arc PST of radius r. The system is in a constant magnetic field B→ that

is directed out of the page. (a) If you rotate the rod at a constant angular velocity ω , what is the current I in

the closed loop OPSO? Assume that the resistor R furnishes all of the resistance in the closed loop. (b) Calculate
the work per unit time that you do while rotating the rod and show that it is equal to the power dissipated in the
resistor.

Figure 13.16 (a) The end of a rotating metal rod slides along a circular wire in a horizontal plane. (b) The
induced current in the rod. (c) The magnetic force on an infinitesimal current segment.

Strategy

The magnetic flux is the magnetic field times the area of the quarter circle or A = r2 θ/2. When finding the emf

through Faraday’s law, all variables are constant in time but θ , with ω = dθ/dt. To calculate the work per unit

time, we know this is related to the torque times the angular velocity. The torque is calculated by knowing the
force on a rod and integrating it over the length of the rod.

Solution

a. From geometry, the area of the loop OPSO is A = r2 θ
2 . Hence, the magnetic flux through the loop is

Φm = BA = Br2 θ
2 .

Differentiating with respect to time and using ω = dθ/dt, we have

ε = |dΦm
dt | = Br2 ω

2 .

When divided by the resistance R of the loop, this yields for the magnitude of the induced current

I = ε
R = Br2 ω

2R .

As θ increases, so does the flux through the loop due to B→ . To counteract this increase, the magnetic

field due to the induced current must be directed into the page in the region enclosed by the loop.
Therefore, as part (b) of Figure 13.16 illustrates, the current circulates clockwise.

b. You rotate the rod by exerting a torque on it. Since the rod rotates at constant angular velocity, this
torque is equal and opposite to the torque exerted on the current in the rod by the original magnetic
field. The magnetic force on the infinitesimal segment of length dx shown in part (c) of Figure 13.16 is
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dFm = IBdx, so the magnetic torque on this segment is

dτm = x · dFm = IBxdx.

The net magnetic torque on the rod is then

τm = ∫
0

r
dτm = IB⌠

⌡0

r
x dx = 1

2IBr2.

The torque τ that you exert on the rod is equal and opposite to τm, and the work that you do when the

rod rotates through an angle dθ is dW = τdθ. Hence, the work per unit time that you do on the rod is

dW
dt = τdθ

dt = 1
2IBr2 dθ

dt = 1
2

⎛
⎝
Br2 ω

2R
⎞
⎠Br2 ω = B2 r4 ω2

4R ,

where we have substituted for I. The power dissipated in the resister is P = I 2 R , which can be written

as

P = ⎛
⎝
Br2 ω

2R
⎞
⎠

2
R = B2 r4 ω2

4R .

Therefore, we see that

P = dW
dt .

Hence, the power dissipated in the resistor is equal to the work per unit time done in rotating the rod.

Significance

An alternative way of looking at the induced emf from Faraday’s law is to integrate in space instead of time. The
solution, however, would be the same. The motional emf is

|ε| = ∫ Bvdl.

The velocity can be written as the angular velocity times the radius and the differential length written as dr.
Therefore,

|ε| = B⌠
⌡

vdr = Bω∫
0

l
rdr = 1

2Bωl2,

which is the same solution as before.

Example 13.6

A Rectangular Coil Rotating in a Magnetic Field

A rectangular coil of area A and N turns is placed in a uniform magnetic field B→ = B j
^

, as shown in Figure

13.17. The coil is rotated about the z-axis through its center at a constant angular velocity ω. Obtain an

expression for the induced emf in the coil.
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Figure 13.17 A rectangular coil rotating in a uniform
magnetic field.

Strategy

According to the diagram, the angle between the perpendicular to the surface ( n̂ ) and the magnetic field ( B→ )

is θ . The dot product of B→ · n̂ simplifies to only the cos θ component of the magnetic field, namely where

the magnetic field projects onto the unit area vector n̂ . The magnitude of the magnetic field and the area of

the loop are fixed over time, which makes the integration simplify quickly. The induced emf is written out using
Faraday’s law.

Solution

When the coil is in a position such that its normal vector n̂ makes an angle θ with the magnetic field B→ ,
the magnetic flux through a single turn of the coil is

Φm = ∫
S

B→ · n̂dA = BAcos θ.

From Faraday’s law, the emf induced in the coil is

ε = −N dΦm
dt = NBAsin θdθ

dt .

The constant angular velocity is ω = dθ/dt. The angle θ represents the time evolution of the angular velocity

or ωt . This is changes the function to time space rather than θ . The induced emf therefore varies sinusoidally

with time according to

ε = ε0 sin ωt,

where ε0 = NBAω.

Significance

If the magnetic field strength or area of the loop were also changing over time, these variables wouldn’t be able
to be pulled out of the time derivative to simply the solution as shown. This example is the basis for an electric
generator, as we will give a full discussion in Applications of Newton’s Law (http://cnx.org/content/
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13.5

m58302/latest/) .

Check Your Understanding Shown below is a rod of length l that is rotated counterclockwise around

the axis through O by the torque due to m g→ . Assuming that the rod is in a uniform magnetic field B→ , what

is the emf induced between the ends of the rod when its angular velocity is ω ? Which end of the rod is at a

higher potential?

Check Your Understanding A rod of length 10 cm moves at a speed of 10 m/s perpendicularly through
a 1.5-T magnetic field. What is the potential difference between the ends of the rod?

13.4 | Induced Electric Fields

Learning Objectives

By the end of this section, you will be able to:

• Connect the relationship between an induced emf from Faraday’s law to an electric field,
thereby showing that a changing magnetic flux creates an electric field

• Solve for the electric field based on a changing magnetic flux in time

The fact that emfs are induced in circuits implies that work is being done on the conduction electrons in the wires. What can
possibly be the source of this work? We know that it’s neither a battery nor a magnetic field, for a battery does not have to
be present in a circuit where current is induced, and magnetic fields never do work on moving charges. The answer is that

the source of the work is an electric field E→ that is induced in the wires. The work done by E→ in moving a unit charge

completely around a circuit is the induced emf ε; that is,

(13.9)ε = ∮ E→ · d l→ ,

where
∮

represents the line integral around the circuit. Faraday’s law can be written in terms of the induced electric field
as

(13.10)∮ E→ · d l→ = − dΦm
dt .

There is an important distinction between the electric field induced by a changing magnetic field and the electrostatic field
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produced by a fixed charge distribution. Specifically, the induced electric field is nonconservative because it does net work
in moving a charge over a closed path, whereas the electrostatic field is conservative and does no net work over a closed
path. Hence, electric potential can be associated with the electrostatic field, but not with the induced field. The following
equations represent the distinction between the two types of electric field:

(13.11)∮ E→ · d l→ ≠ 0 (induced);

∮ E→ · d l→ = 0 (electrostatic).

Our results can be summarized by combining these equations:

(13.12)ε = ∮ E→ · d l→ = −dΦm
dt .

Example 13.7

Induced Electric Field in a Circular Coil

What is the induced electric field in the circular coil of Example 13.2 (and Figure 13.9) at the three times
indicated?

Strategy

Using cylindrical symmetry, the electric field integral simplifies into the electric field times the circumference of
a circle. Since we already know the induced emf, we can connect these two expressions by Faraday’s law to solve
for the induced electric field.

Solution

The induced electric field in the coil is constant in magnitude over the cylindrical surface, similar to how

Ampere’s law problems with cylinders are solved. Since E→ is tangent to the coil,

∮ E→ · d l→ = ∮ Edl = 2πrE.

When combined with Equation 13.12, this gives

E = ε
2πr .

The direction of ε is counterclockwise, and E→ circulates in the same direction around the coil. The values of

E are

E(t1) = 6.0 V
2π (0.50 m) = 1.9 V/m;

E(t2) = 4.7 V
2π (0.50 m) = 1.5 V/m;

E(t3) = 0.040 V
2π (0.50 m) = 0.013 V/m.

Significance

When the magnetic flux through a circuit changes, a nonconservative electric field is induced, which drives
current through the circuit. But what happens if dB/dt ≠ 0 in free space where there isn’t a conducting path?

The answer is that this case can be treated as if a conducting path were present; that is, nonconservative electric
fields are induced wherever dB/dt ≠ 0, whether or not there is a conducting path present.

These nonconservative electric fields always satisfy Equation 13.12. For example, if the circular coil of Figure
13.9 were removed, an electric field in free space at r = 0.50 m would still be directed counterclockwise, and its
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magnitude would still be 1.9 V/m at t = 0 , 1.5 V/m at t = 5.0 × 10−2 s, etc. The existence of induced electric

fields is certainly not restricted to wires in circuits.

Example 13.8

Electric Field Induced by the Changing Magnetic Field of a Solenoid

Part (a) of Figure 13.18 shows a long solenoid with radius R and n turns per unit length; its current decreases
with time according to I = I0 e−αt. What is the magnitude of the induced electric field at a point a distance r

from the central axis of the solenoid (a) when r > R and (b) when r < R [see part (b) of Figure 13.18]. (c)

What is the direction of the induced field at both locations? Assume that the infinite-solenoid approximation is
valid throughout the regions of interest.

Figure 13.18 (a) The current in a long solenoid is decreasing exponentially. (b) A cross-sectional
view of the solenoid from its left end. The cross-section shown is near the middle of the solenoid. An
electric field is induced both inside and outside the solenoid.

Strategy

Using the formula for the magnetic field inside an infinite solenoid and Faraday’s law, we calculate the induced
emf. Since we have cylindrical symmetry, the electric field integral reduces to the electric field times the
circumference of the integration path. Then we solve for the electric field.

Solution
a. The magnetic field is confined to the interior of the solenoid where

B = µ0 nI = µ0 nI0 e−αt.

Thus, the magnetic flux through a circular path whose radius r is greater than R, the solenoid radius, is

Φm = BA = µ0 nI0 πR2 e−αt.

The induced field E→ is tangent to this path, and because of the cylindrical symmetry of the system, its

magnitude is constant on the path. Hence, we have
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13.6

13.7

|∮ E→ · d l→ | = |dΦm
dt |,

E(2πr) = | d
dt(µ0 nI0 πR2 e−αt)| = αµ0 nI0 πR2 e−αt,

E = αµ0 nI0 R2

2r e−αt (r > R).

b. For a path of radius r inside the solenoid, Φm = Bπr2, so

E(2πr) = | d
dt(µ0 nI0 πr2 e−αt)| = αµ0 nI0 πr2 e−αt,

and the induced field is

E = αµ0 nI0 r
2 e−αt (r < R).

c. The magnetic field points into the page as shown in part (b) and is decreasing. If either of the circular
paths were occupied by conducting rings, the currents induced in them would circulate as shown, in
conformity with Lenz’s law. The induced electric field must be so directed as well.

Significance

In part (b), note that | E→ | increases with r inside and decreases as 1/r outside the solenoid, as shown in Figure

13.19.

Figure 13.19 The electric field vs. distance r. When r < R,
the electric field rises linearly, whereas when r > R, the

electric field falls of proportional to 1/r.

Check Your Understanding Suppose that the coil of Example 13.2 is a square rather than circular.
Can Equation 13.12 be used to calculate (a) the induced emf and (b) the induced electric field?

Check Your Understanding What is the magnitude of the induced electric field in Example 13.8 at

t = 0 if r = 6.0 cm, R = 2.0 cm, n = 2000 turns per meter, I0 = 2.0 A, and α = 200 s−1?
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13.9

Check Your Understanding The magnetic field shown below is confined to the cylindrical region

shown and is changing with time. Identify those paths for which ε = ∮ E→ · d l→ ≠ 0.

Check Your Understanding A long solenoid of cross-sectional area 5.0 cm2 is wound with 25 turns

of wire per centimeter. It is placed in the middle of a closely wrapped coil of 10 turns and radius 25 cm, as
shown below. (a) What is the emf induced in the coil when the current through the solenoid is decreasing at a
rate dI/dt = −0.20 A/s? (b) What is the electric field induced in the coil?

13.5 | Eddy Currents

Learning Objectives

By the end of this section, you will be able to:

• Explain how eddy currents are created in metals

• Describe situations where eddy currents are beneficial and where they are not helpful

As discussed two sections earlier, a motional emf is induced when a conductor moves in a magnetic field or when a magnetic
field moves relative to a conductor. If motional emf can cause a current in the conductor, we refer to that current as an eddy
current.

Magnetic Damping
Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the apparatus
shown in Figure 13.20, which swings a pendulum bob between the poles of a strong magnet. (This is another favorite
physics demonstration.) If the bob is metal, significant drag acts on the bob as it enters and leaves the field, quickly damping
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the motion. If, however, the bob is a slotted metal plate, as shown in part (b) of the figure, the magnet produces a much
smaller effect. There is no discernible effect on a bob made of an insulator. Why does drag occur in both directions, and are
there any uses for magnetic drag?

Figure 13.20 A common physics demonstration device for exploring eddy
currents and magnetic damping. (a) The motion of a metal pendulum bob
swinging between the poles of a magnet is quickly damped by the action of
eddy currents. (b) There is little effect on the motion of a slotted metal bob,
implying that eddy currents are made less effective. (c) There is also no
magnetic damping on a nonconducting bob, since the eddy currents are
extremely small.

Figure 13.21 shows what happens to the metal plate as it enters and leaves the magnetic field. In both cases, it experiences
a force opposing its motion. As it enters from the left, flux increases, setting up an eddy current (Faraday’s law) in the
counterclockwise direction (Lenz’s law), as shown. Only the right-hand side of the current loop is in the field, so an
unopposed force acts on it to the left (RHR-1). When the metal plate is completely inside the field, there is no eddy current
if the field is uniform, since the flux remains constant in this region. But when the plate leaves the field on the right, flux
decreases, causing an eddy current in the clockwise direction that, again, experiences a force to the left, further slowing the
motion. A similar analysis of what happens when the plate swings from the right toward the left shows that its motion is
also damped when entering and leaving the field.

Figure 13.21 A more detailed look at the conducting plate passing
between the poles of a magnet. As it enters and leaves the field, the change
in flux produces an eddy current. Magnetic force on the current loop
opposes the motion. There is no current and no magnetic drag when the
plate is completely inside the uniform field.
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When a slotted metal plate enters the field (Figure 13.22), an emf is induced by the change in flux, but it is less effective
because the slots limit the size of the current loops. Moreover, adjacent loops have currents in opposite directions, and their
effects cancel. When an insulating material is used, the eddy current is extremely small, so magnetic damping on insulators
is negligible. If eddy currents are to be avoided in conductors, then they must be slotted or constructed of thin layers of
conducting material separated by insulating sheets.

Figure 13.22 Eddy currents induced in a slotted metal plate
entering a magnetic field form small loops, and the forces on
them tend to cancel, thereby making magnetic drag almost zero.

Applications of Magnetic Damping
One use of magnetic damping is found in sensitive laboratory balances. To have maximum sensitivity and accuracy, the
balance must be as friction-free as possible. But if it is friction-free, then it will oscillate for a very long time. Magnetic
damping is a simple and ideal solution. With magnetic damping, drag is proportional to speed and becomes zero at zero
velocity. Thus, the oscillations are quickly damped, after which the damping force disappears, allowing the balance to be
very sensitive (Figure 13.23). In most balances, magnetic damping is accomplished with a conducting disc that rotates in
a fixed field.

Figure 13.23 Magnetic damping of this sensitive balance slows its oscillations. Since
Faraday’s law of induction gives the greatest effect for the most rapid change, damping is
greatest for large oscillations and goes to zero as the motion stops.

Since eddy currents and magnetic damping occur only in conductors, recycling centers can use magnets to separate metals
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from other materials. Trash is dumped in batches down a ramp, beneath which lies a powerful magnet. Conductors in the
trash are slowed by magnetic damping while nonmetals in the trash move on, separating from the metals (Figure 13.24).
This works for all metals, not just ferromagnetic ones. A magnet can separate out the ferromagnetic materials alone by
acting on stationary trash.

Figure 13.24 Metals can be separated from other trash by magnetic drag. Eddy currents and magnetic drag are created in
the metals sent down this ramp by the powerful magnet beneath it. Nonmetals move on.

Other major applications of eddy currents appear in metal detectors and braking systems in trains and roller coasters.
Portable metal detectors (Figure 13.25) consist of a primary coil carrying an alternating current and a secondary coil in
which a current is induced. An eddy current is induced in a piece of metal close to the detector, causing a change in the
induced current within the secondary coil. This can trigger some sort of signal, such as a shrill noise.

Figure 13.25 A soldier in Iraq uses a metal detector to search
for explosives and weapons. (credit: U.S. Army)

Braking using eddy currents is safer because factors such as rain do not affect the braking and the braking is smoother.
However, eddy currents cannot bring the motion to a complete stop, since the braking force produced decreases as speed is
reduced. Thus, speed can be reduced from say 20 m/s to 5 m/s, but another form of braking is needed to completely stop
the vehicle. Generally, powerful rare-earth magnets such as neodymium magnets are used in roller coasters. Figure 13.26
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shows rows of magnets in such an application. The vehicle has metal fins (normally containing copper) that pass through
the magnetic field, slowing the vehicle down in much the same way as with the pendulum bob shown in Figure 13.20.

Figure 13.26 The rows of rare-earth magnets (protruding horizontally) are used for magnetic
braking in roller coasters. (credit: Stefan Scheer)

Induction cooktops have electromagnets under their surface. The magnetic field is varied rapidly, producing eddy currents
in the base of the pot, causing the pot and its contents to increase in temperature. Induction cooktops have high efficiencies
and good response times but the base of the pot needs to be conductors, such as iron or steel, for induction to work.

13.6 | Electric Generators and Back Emf

Learning Objectives

By the end of this section, you will be able to:

• Explain how an electric generator works

• Determine the induced emf in a loop at any time interval, rotating at a constant rate in a
magnetic field

• Show that rotating coils have an induced emf; in motors this is called back emf because it
opposes the emf input to the motor

A variety of important phenomena and devices can be understood with Faraday’s law. In this section, we examine two of
these.

Electric Generators
Electric generators induce an emf by rotating a coil in a magnetic field, as briefly discussed in Motional Emf. We now
explore generators in more detail. Consider the following example.

606 Chapter 13 | Electromagnetic Induction

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Example 13.9

Calculating the Emf Induced in a Generator Coil

The generator coil shown in Figure 13.27 is rotated through one-fourth of a revolution (from θ = 0° to

θ = 90°) in 15.0 ms. The 200-turn circular coil has a 5.00-cm radius and is in a uniform 0.80-T magnetic field.

What is the emf induced?

Figure 13.27 When this generator coil is rotated through one-
fourth of a revolution, the magnetic flux Φm changes from its

maximum to zero, inducing an emf.

Strategy

Faraday’s law of induction is used to find the emf induced:

ε = −N dΦm
dt .

We recognize this situation as the same one in Example 13.6. According to the diagram, the projection of the

surface normal vector n̂ to the magnetic field is initially cos θ, and this is inserted by the definition of the dot

product. The magnitude of the magnetic field and area of the loop are fixed over time, which makes the integration
simplify quickly. The induced emf is written out using Faraday’s law:

ε = NBA sin θdθ
dt .
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Solution

We are given that N = 200, B = 0.80 T, θ = 90° , dθ = 90° = π/2 , and dt = 15.0 ms. The area of the

loop is

A = πr2 = (3.14)(0.0500 m)2 = 7.85 × 10−3 m2.

Entering this value gives

ε = (200)(0.80 T)(7.85 × 10−3 m2)sin (90°) π/2
15.0 × 10−3 s

= 131 V.

Significance

This is a practical average value, similar to the 120 V used in household power.

The emf calculated in Example 13.9 is the average over one-fourth of a revolution. What is the emf at any given instant?
It varies with the angle between the magnetic field and a perpendicular to the coil. We can get an expression for emf as
a function of time by considering the motional emf on a rotating rectangular coil of width w and height l in a uniform
magnetic field, as illustrated in Figure 13.28.

Figure 13.28 A generator with a single rectangular coil
rotated at constant angular velocity in a uniform magnetic field
produces an emf that varies sinusoidally in time. Note the
generator is similar to a motor, except the shaft is rotated to
produce a current rather than the other way around.

Charges in the wires of the loop experience the magnetic force, because they are moving in a magnetic field. Charges in the
vertical wires experience forces parallel to the wire, causing currents. But those in the top and bottom segments feel a force
perpendicular to the wire, which does not cause a current. We can thus find the induced emf by considering only the side
wires. Motional emf is given to be ε = Blv , where the velocity v is perpendicular to the magnetic field B. Here the velocity

is at an angle θ with B, so that its component perpendicular to B is v sin θ (see Figure 13.28). Thus, in this case, the emf

induced on each side is ε = Blv sin θ , and they are in the same direction. The total emf around the loop is then

(13.13)ε = 2Blv sin θ.

This expression is valid, but it does not give emf as a function of time. To find the time dependence of emf, we assume the
coil rotates at a constant angular velocity ω . The angle θ is related to angular velocity by θ = ωt, so that

(13.14)ε = 2Blv sin(ωt).

Now, linear velocity v is related to angular velocity ω by v = rω. Here, r = w/2, so that v = (w/2)ω, and

(13.15)ε = 2Blw2 ω sin ωt = (lw)Bω sin ωt.

Noting that the area of the loop is A = lw, and allowing for N loops, we find that
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(13.16)ε = NBAω sin(ωt).

This is the emf induced in a generator coil of N turns and area A rotating at a constant angular velocity ω in a uniform

magnetic field B. This can also be expressed as

(13.17)ε = ε0 sin ωt,

where

(13.18)ε0 = NABω

is the peak emf, since the maximum value of sin(wt) = 1 . Note that the frequency of the oscillation is f = ω/2π and the

period is T = 1/ f = 2π/ ω. Figure 13.29 shows a graph of emf as a function of time, and it now seems reasonable that

ac voltage is sinusoidal.

Figure 13.29 The emf of a generator is sent to a light bulb with the system of rings and
brushes shown. The graph gives the emf of the generator as a function of time, where ε0 is

the peak emf. The period is T = 1/ f = 2π/ ω, where f is the frequency.

The fact that the peak emf is ε0 = NBAω makes good sense. The greater the number of coils, the larger their area, and the

stronger the field, the greater the output voltage. It is interesting that the faster the generator is spun (greater ω ), the greater

the emf. This is noticeable on bicycle generators—at least the cheaper varieties.

Figure 13.30 shows a scheme by which a generator can be made to produce pulsed dc. More elaborate arrangements of
multiple coils and split rings can produce smoother dc, although electronic rather than mechanical means are usually used
to make ripple-free dc.
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Figure 13.30 Split rings, called commutators, produce a pulsed dc emf output in this
configuration.

In real life, electric generators look a lot different from the figures in this section, but the principles are the same. The source
of mechanical energy that turns the coil can be falling water (hydropower), steam produced by the burning of fossil fuels, or
the kinetic energy of wind. Figure 13.31 shows a cutaway view of a steam turbine; steam moves over the blades connected
to the shaft, which rotates the coil within the generator. The generation of electrical energy from mechanical energy is the
basic principle of all power that is sent through our electrical grids to our homes.

Figure 13.31 Steam turbine/generator. The steam produced by burning coal impacts the
turbine blades, turning the shaft, which is connected to the generator.

Generators illustrated in this section look very much like the motors illustrated previously. This is not coincidental. In fact,
a motor becomes a generator when its shaft rotates. Certain early automobiles used their starter motor as a generator. In the
next section, we further explore the action of a motor as a generator.
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Back Emf
Generators convert mechanical energy into electrical energy, whereas motors convert electrical energy into mechanical
energy. Thus, it is not surprising that motors and generators have the same general construction. A motor works by sending
a current through a loop of wire located in a magnetic field. As a result, the magnetic field exerts torque on the loop.
This rotates a shaft, thereby extracting mechanical work out of the electrical current sent in initially. (Refer to Force
and Torque on a Current Loop for a discussion on motors that will help you understand more about them before
proceeding.)

When the coil of a motor is turned, magnetic flux changes through the coil, and an emf (consistent with Faraday’s law) is
induced. The motor thus acts as a generator whenever its coil rotates. This happens whether the shaft is turned by an external
input, like a belt drive, or by the action of the motor itself. That is, when a motor is doing work and its shaft is turning, an
emf is generated. Lenz’s law tells us the emf opposes any change, so that the input emf that powers the motor is opposed by
the motor’s self-generated emf, called the back emf of the motor (Figure 13.32).

Figure 13.32 The coil of a dc motor is represented as a
resistor in this schematic. The back emf is represented as a
variable emf that opposes the emf driving the motor. Back emf is
zero when the motor is not turning and increases proportionally
to the motor’s angular velocity.

The generator output of a motor is the difference between the supply voltage and the back emf. The back emf is zero when
the motor is first turned on, meaning that the coil receives the full driving voltage and the motor draws maximum current
when it is on but not turning. As the motor turns faster, the back emf grows, always opposing the driving emf, and reduces
both the voltage across the coil and the amount of current it draws. This effect is noticeable in many common situations.
When a vacuum cleaner, refrigerator, or washing machine is first turned on, lights in the same circuit dim briefly due to the
IR drop produced in feeder lines by the large current drawn by the motor.

When a motor first comes on, it draws more current than when it runs at its normal operating speed. When a mechanical
load is placed on the motor, like an electric wheelchair going up a hill, the motor slows, the back emf drops, more current
flows, and more work can be done. If the motor runs at too low a speed, the larger current can overheat it (via resistive

power in the coil, P = I 2 R), perhaps even burning it out. On the other hand, if there is no mechanical load on the motor,

it increases its angular velocity ω until the back emf is nearly equal to the driving emf. Then the motor uses only enough

energy to overcome friction.

Eddy currents in iron cores of motors can cause troublesome energy losses. These are usually minimized by constructing
the cores out of thin, electrically insulated sheets of iron. The magnetic properties of the core are hardly affected by the
lamination of the insulating sheet, while the resistive heating is reduced considerably. Consider, for example, the motor
coils represented in Figure 13.32. The coils have an equivalent resistance of 0.400 Ω and are driven by an emf of 48.0 V.

Shortly after being turned on, they draw a current

I = V /R = (48.0 V)/(0.400 Ω) = 120 A

and thus dissipate P = I 2 R = 5.76 kW of energy as heat transfer. Under normal operating conditions for this motor,

suppose the back emf is 40.0 V. Then at operating speed, the total voltage across the coils is 8.0 V (48.0 V minus the 40.0
V back emf), and the current drawn is

I = V /R = (8.0 V)/(0.400 Ω) = 20 A .

Under normal load, then, the power dissipated is P = IV = (20 A)(8.0 V) = 160 W. This does not cause a problem for
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this motor, whereas the former 5.76 kW would burn out the coils if sustained.

Example 13.10

A Series-Wound Motor in Operation

The total resistance ⎛
⎝R f + Ra

⎞
⎠ of a series-wound dc motor is 2.0 Ω (Figure 13.33). When connected to a

120-V source ( εS ), the motor draws 10 A while running at constant angular velocity. (a) What is the back emf

induced in the rotating coil, εi? (b) What is the mechanical power output of the motor? (c) How much power is

dissipated in the resistance of the coils? (d) What is the power output of the 120-V source? (e) Suppose the load
on the motor increases, causing it to slow down to the point where it draws 20 A. Answer parts (a) through (d) for
this situation.

Figure 13.33 Circuit representation of a series-wound direct
current motor.

Strategy

The back emf is calculated based on the difference between the supplied voltage and the loss from the current
through the resistance. The power from each device is calculated from one of the power formulas based on the
given information.

Solution
a. The back emf is

εi = εs − I(R f + Ra) = 120 V − (10 A)(2.0 Ω) = 100 V.

b. Since the potential across the armature is 100 V when the current through it is 10 A, the power output of
the motor is

Pm = εi I = (100 V)(10 A) = 1.0 × 103 W.
c. A 10-A current flows through coils whose combined resistance is 2.0 Ω , so the power dissipated in the

coils is

PR = I 2 R = (10 A)2(2.0 Ω) = 2.0 × 102 W.
d. Since 10 A is drawn from the 120-V source, its power output is

Ps = εs I = (120 V)(10 A) = 1.2 × 103 W.
e. Repeating the same calculations with I = 20 A , we find

εi = 80 V, Pm = 1.6 × 103 W, PR = 8.0 × 102 W, and Ps = 2.4 × 103 W.

The motor is turning more slowly in this case, so its power output and the power of the source are larger.
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Significance

Notice that we have an energy balance in part (d): 1.2 × 103 W = 1.0 × 103 W + 2.0 × 102 W.

13.7 | Applications of Electromagnetic Induction

Learning Objectives

By the end of this section, you will be able to:

• Explain how computer hard drives and graphic tablets operate using magnetic induction

• Explain how hybrid/electric vehicles and transcranial magnetic stimulation use magnetic
induction to their advantage

Modern society has numerous applications of Faraday’s law of induction, as we will explore in this chapter and others. At
this juncture, let us mention several that involve recording information using magnetic fields.

Some computer hard drives apply the principle of magnetic induction. Recorded data are made on a coated, spinning disk.
Historically, reading these data was made to work on the principle of induction. However, most input information today is
carried in digital rather than analog form—a series of 0s or 1s are written upon the spinning hard drive. Therefore, most
hard drive readout devices do not work on the principle of induction, but use a technique known as giant magnetoresistance.
Giant magnetoresistance is the effect of a large change of electrical resistance induced by an applied magnetic field to thin
films of alternating ferromagnetic and nonmagnetic layers. This is one of the first large successes of nanotechnology.

Graphics tablets, or tablet computers where a specially designed pen is used to draw digital images, also applies induction
principles. The tablets discussed here are labeled as passive tablets, since there are other designs that use either a battery-
operated pen or optical signals to write with. The passive tablets are different than the touch tablets and phones many of us
use regularly, but may still be found when signing your signature at a cash register. Underneath the screen, shown in Figure
13.34, are tiny wires running across the length and width of the screen. The pen has a tiny magnetic field coming from the
tip. As the tip brushes across the screen, a changing magnetic field is felt in the wires which translates into an induced emf
that is converted into the line you just drew.
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Figure 13.34 A tablet with a specially designed pen to write with is another application of
magnetic induction. (credit: Jane Whitney)

Another application of induction is the magnetic stripe on the back of your personal credit card as used at the grocery store
or the ATM machine. This works on the same principle as the audio or video tape, in which a playback head reads personal
information from your card.

Check out this video (https://openstaxcollege.org/l/21flashmagind) to see how flashlights can use
magnetic induction. A magnet moves by your mechanical work through a wire. The induced current charges a
capacitor that stores the charge that will light the lightbulb even while you are not doing this mechanical work.

Electric and hybrid vehicles also take advantage of electromagnetic induction. One limiting factor that inhibits widespread
acceptance of 100% electric vehicles is that the lifetime of the battery is not as long as the time you get to drive on a full
tank of gas. To increase the amount of charge in the battery during driving, the motor can act as a generator whenever the
car is braking, taking advantage of the back emf produced. This extra emf can be newly acquired stored energy in the car’s
battery, prolonging the life of the battery.

Another contemporary area of research in which electromagnetic induction is being successfully implemented is
transcranial magnetic stimulation (TMS). A host of disorders, including depression and hallucinations, can be traced to
irregular localized electrical activity in the brain. In transcranial magnetic stimulation, a rapidly varying and very localized
magnetic field is placed close to certain sites identified in the brain. The usage of TMS as a diagnostic technique is well
established.

Check out this Youtube video (https://openstaxcollege.org/l/21randrelectro) to see how rock-and-roll
instruments like electric guitars use electromagnetic induction to get those strong beats.
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back emf

eddy current

electric generator

Faraday’s law

induced electric field

induced emf

Lenz’s law

magnetic damping

magnetic flux

motionally induced emf

peak emf

CHAPTER 13 REVIEW

KEY TERMS
emf generated by a running motor, because it consists of a coil turning in a magnetic field; it opposes the

voltage powering the motor

current loop in a conductor caused by motional emf

device for converting mechanical work into electric energy; it induces an emf by rotating a coil in a
magnetic field

induced emf is created in a closed loop due to a change in magnetic flux through the loop

created based on the changing magnetic flux with time

short-lived voltage generated by a conductor or coil moving in a magnetic field

direction of an induced emf opposes the change in magnetic flux that produced it; this is the negative sign in
Faraday’s law

drag produced by eddy currents

measurement of the amount of magnetic field lines through a given area

voltage produced by the movement of a conducting wire in a magnetic field

maximum emf produced by a generator

KEY EQUATIONS

Magnetic flux Φm = ∫
S

B→ · n̂dA

Faraday’s law ε = − N dΦm
dt

Motionally induced emf ε = Blv

Motional emf around a circuit ε = ∮ E→ · d l→ = − dΦm
dt

Emf produced by an electric generator ε = NBA ω sin(ωt)

SUMMARY

13.1 Faraday’s Law

• The magnetic flux through an enclosed area is defined as the amount of field lines cutting through a surface area A
defined by the unit area vector.

• The units for magnetic flux are webers, where 1 Wb = 1 T · m2.

• The induced emf in a closed loop due to a change in magnetic flux through the loop is known as Faraday’s law. If
there is no change in magnetic flux, no induced emf is created.

13.2 Lenz's Law

• We can use Lenz’s law to determine the directions of induced magnetic fields, currents, and emfs.

• The direction of an induced emf always opposes the change in magnetic flux that causes the emf, a result known as
Lenz’s law.
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13.3 Motional Emf

• The relationship between an induced emf ε in a wire moving at a constant speed v through a magnetic field B is

given by ε = Blv.

• An induced emf from Faraday’s law is created from a motional emf that opposes the change in flux.

13.4 Induced Electric Fields

• A changing magnetic flux induces an electric field.

• Both the changing magnetic flux and the induced electric field are related to the induced emf from Faraday’s law.

13.5 Eddy Currents

• Current loops induced in moving conductors are called eddy currents. They can create significant drag, called
magnetic damping.

• Manipulation of eddy currents has resulted in applications such as metal detectors, braking in trains or roller
coasters, and induction cooktops.

13.6 Electric Generators and Back Emf

• An electric generator rotates a coil in a magnetic field, inducing an emf given as a function of time by
ε = NBAω sin(ωt) where A is the area of an N-turn coil rotated at a constant angular velocity ω in a uniform

magnetic field B→ .

• The peak emf of a generator is ε0 = NBAω .

• Any rotating coil produces an induced emf. In motors, this is called back emf because it opposes the emf input to
the motor.

13.7 Applications of Electromagnetic Induction

• Hard drives utilize magnetic induction to read/write information.

• Other applications of magnetic induction can be found in graphics tablets, electric and hybrid vehicles, and in
transcranial magnetic stimulation.

CONCEPTUAL QUESTIONS

13.1 Faraday’s Law

1. A stationary coil is in a magnetic field that is changing
with time. Does the emf induced in the coil depend on the
actual values of the magnetic field?

2. In Faraday’s experiments, what would be the advantage
of using coils with many turns?

3. A copper ring and a wooden ring of the same
dimensions are placed in magnetic fields so that there is the
same change in magnetic flux through them. Compare the
induced electric fields and currents in the rings.

4. Discuss the factors determining the induced emf in a
closed loop of wire.

5. (a) Does the induced emf in a circuit depend on the

resistance of the circuit? (b) Does the induced current
depend on the resistance of the circuit?

6. How would changing the radius of loop D shown below
affect its emf, assuming C and D are much closer together
compared to their radii?

7. Can there be an induced emf in a circuit at an instant
when the magnetic flux through the circuit is zero?

8. Does the induced emf always act to decrease the
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magnetic flux through a circuit?

9. How would you position a flat loop of wire in a
changing magnetic field so that there is no induced emf in
the loop?

10. The normal to the plane of a single-turn conducting
loop is directed at an angle θ to a spatially uniform

magnetic field B→ . It has a fixed area and orientation

relative to the magnetic field. Show that the emf induced in
the loop is given by ε = (dB/dt)(A cos θ), where A is the

area of the loop.

13.2 Lenz's Law

11. The circular conducting loops shown in the
accompanying figure are parallel, perpendicular to the
plane of the page, and coaxial. (a) When the switch S is
closed, what is the direction of the current induced in D?
(b) When the switch is opened, what is the direction of the
current induced in loop D?

12. The north pole of a magnet is moved toward a copper
loop, as shown below. If you are looking at the loop from
above the magnet, will you say the induced current is
circulating clockwise or counterclockwise?

13. The accompanying figure shows a conducting ring
at various positions as it moves through a magnetic field.
What is the sense of the induced emf for each of those
positions?

14. Show that ε and dΦm /dt have the same units.

15. State the direction of the induced current for each case
shown below, observing from the side of the magnet.

13.3 Motional Emf

16. A bar magnet falls under the influence of gravity along
the axis of a long copper tube. If air resistance is negligible,
will there be a force to oppose the descent of the magnet?
If so, will the magnet reach a terminal velocity?

17. Around the geographic North Pole (or magnetic South
Pole), Earth’s magnetic field is almost vertical. If an
airplane is flying northward in this region, which side of
the wing is positively charged and which is negatively
charged?

18. A wire loop moves translationally (no rotation) in
a uniform magnetic field. Is there an emf induced in the
loop?
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13.4 Induced Electric Fields

19. Is the work required to accelerate a rod from rest to
a speed v in a magnetic field greater than the final kinetic
energy of the rod? Why?

20. The copper sheet shown below is partially in a
magnetic field. When it is pulled to the right, a resisting
force pulls it to the left. Explain. What happen if the sheet
is pushed to the left?

13.5 Eddy Currents

21. A conducting sheet lies in a plane perpendicular to

a magnetic field B→ that is below the sheet. If B→

oscillates at a high frequency and the conductor is made
of a material of low resistivity, the region above the sheet

is effectively shielded from B→ . Explain why. Will the

conductor shield this region from static magnetic fields?

22. Electromagnetic braking can be achieved by applying
a strong magnetic field to a spinning metal disk attached to
a shaft. (a) How can a magnetic field slow the spinning of
a disk? (b) Would the brakes work if the disk was made of
plastic instead of metal?

23. A coil is moved through a magnetic field as shown
below. The field is uniform inside the rectangle and zero
outside. What is the direction of the induced current and
what is the direction of the magnetic force on the coil at
each position shown?

PROBLEMS

13.1 Faraday’s Law

24. A 50-turn coil has a diameter of 15 cm. The coil is
placed in a spatially uniform magnetic field of magnitude
0.50 T so that the face of the coil and the magnetic field are
perpendicular. Find the magnitude of the emf induced in the
coil if the magnetic field is reduced to zero uniformly in (a)
0.10 s, (b) 1.0 s, and (c) 60 s.

25. Repeat your calculations of the preceding problem’s
time of 0.1 s with the plane of the coil making an angle of
(a) 30°, (b) 60°, and (c) 90° with the magnetic field.

26. A square loop whose sides are 6.0-cm long is made
with copper wire of radius 1.0 mm. If a magnetic field
perpendicular to the loop is changing at a rate of 5.0 mT/s,
what is the current in the loop?

27. The magnetic field through a circular loop of radius
10.0 cm varies with time as shown below. The field is
perpendicular to the loop. Plot the magnitude of the induced
emf in the loop as a function of time.

28. The accompanying figure shows a single-turn
rectangular coil that has a resistance of 2.0 Ω. The

magnetic field at all points inside the coil varies according
to B = B0 e−αt, where B0 = 0.25 T and α = 200 Hz.
What is the current induced in the coil at (a) t = 0.001 s ,

(b) 0.002 s, (c) 2.0 s?
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29. How would the answers to the preceding problem
change if the coil consisted of 20 closely spaced turns?

30. A long solenoid with n = 10 turns per centimeter has

a cross-sectional area of 5.0 cm2 and carries a current of

0.25 A. A coil with five turns encircles the solenoid. When
the current through the solenoid is turned off, it decreases
to zero in 0.050 s. What is the average emf induced in the
coil?

31. A rectangular wire loop with length a and width b
lies in the xy-plane, as shown below. Within the loop there
is a time-dependent magnetic field given by

B→ (t) = C⎛
⎝(x cos ωt) i

^
+ (y sin ωt) k̂⎞

⎠ , with B→ (t) in

tesla. Determine the emf induced in the loop as a function
of time.

32. The magnetic field perpendicular to a single wire loop
of diameter 10.0 cm decreases from 0.50 T to zero. The
wire is made of copper and has a diameter of 2.0 mm and
length 1.0 cm. How much charge moves through the wire
while the field is changing?

13.2 Lenz's Law

33. A single-turn circular loop of wire of radius 50 mm
lies in a plane perpendicular to a spatially uniform magnetic
field. During a 0.10-s time interval, the magnitude of the
field increases uniformly from 200 to 300 mT. (a)
Determine the emf induced in the loop. (b) If the magnetic
field is directed out of the page, what is the direction of the
current induced in the loop?

34. When a magnetic field is first turned on, the flux
through a 20-turn loop varies with time according to

Φm = 5.0t2 − 2.0t, where Φm is in milliwebers, t is in

seconds, and the loop is in the plane of the page with the
unit normal pointing outward. (a) What is the emf induced
in the loop as a function of time? What is the direction of
the induced current at (b) t = 0, (c) 0.10, (d) 1.0, and (e) 2.0
s?

35. The magnetic flux through the loop shown in the
accompanying figure varies with time according to

Φm = 2.00e−3t sin(120πt), where Φm is in

milliwebers. What are the direction and magnitude of the
current through the 5.00-Ω resistor at (a) t = 0 ; (b)

t = 2.17 × 10−2 s, and (c) t = 3.00 s?

36. Use Lenz’s law to determine the direction of induced
current in each case.

13.3 Motional Emf

37. An automobile with a radio antenna 1.0 m long travels
at 100.0 km/h in a location where the Earth’s horizontal

magnetic field is 5.5 × 10−5 T. What is the maximum

possible emf induced in the antenna due to this motion?

38. The rectangular loop of N turns shown below moves

to the right with a constant velocity v→ while leaving

the poles of a large electromagnet. (a) Assuming that the
magnetic field is uniform between the pole faces and
negligible elsewhere, determine the induced emf in the
loop. (b) What is the source of work that produces this emf?
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39. Suppose the magnetic field of the preceding problem
oscillates with time according to B = B0 sin ωt. What

then is the emf induced in the loop when its trailing side is a
distance d from the right edge of the magnetic field region?

40. A coil of 1000 turns encloses an area of 25 cm2 .

It is rotated in 0.010 s from a position where its plane is
perpendicular to Earth’s magnetic field to one where its
plane is parallel to the field. If the strength of the field is

6.0 × 10−5 T, what is the average emf induced in the

coil?

41. In the circuit shown in the accompanying figure, the
rod slides along the conducting rails at a constant velocity

v→ . The velocity is in the same plane as the rails and

directed at an angle θ to them. A uniform magnetic field

B→ is directed out of the page. What is the emf induced in

the rod?

42. The rod shown in the accompanying figure is moving
through a uniform magnetic field of strength B = 0.50 T
with a constant velocity of magnitude v = 8.0 m/s. What

is the potential difference between the ends of the rod?
Which end of the rod is at a higher potential?

43. A 25-cm rod moves at 5.0 m/s in a plane perpendicular
to a magnetic field of strength 0.25 T. The rod, velocity
vector, and magnetic field vector are mutually
perpendicular, as indicated in the accompanying figure.

Calculate (a) the magnetic force on an electron in the rod,
(b) the electric field in the rod, and (c) the potential
difference between the ends of the rod. (d) What is the
speed of the rod if the potential difference is 1.0 V?

44. In the accompanying figure, the rails, connecting end
piece, and rod all have a resistance per unit length of
2.0 Ω/cm. The rod moves to the left at v = 3.0 m/s. If

B = 0.75 T everywhere in the region, what is the current

in the circuit (a) when a = 8.0 cm? (b) when

a = 5.0 cm? Specify also the sense of the current flow.

45. The rod shown below moves to the right on essentially
zero-resistance rails at a speed of v = 3.0 m/s. If

B = 0.75 T everywhere in the region, what is the current

through the 5.0-Ω resistor? Does the current circulate

clockwise or counterclockwise?

46. Shown below is a conducting rod that slides along
metal rails. The apparatus is in a uniform magnetic field
of strength 0.25 T, which is directly into the page. The rod
is pulled to the right at a constant speed of 5.0 m/s by a

force F→ . The only significant resistance in the circuit

comes from the 2.0-Ω resistor shown. (a) What is the emf

induced in the circuit? (b) What is the induced current?
Does it circulate clockwise or counter clockwise? (c) What

is the magnitude of F→ ? (d) What are the power output of

F→ and the power dissipated in the resistor?
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13.4 Induced Electric Fields

47. Calculate the induced electric field in a 50-turn coil
with a diameter of 15 cm that is placed in a spatially
uniform magnetic field of magnitude 0.50 T so that the
face of the coil and the magnetic field are perpendicular.
This magnetic field is reduced to zero in 0.10 seconds.
Assume that the magnetic field is cylindrically symmetric
with respect to the central axis of the coil.

48. The magnetic field through a circular loop of radius
10.0 cm varies with time as shown in the accompanying
figure. The field is perpendicular to the loop. Assuming
cylindrical symmetry with respect to the central axis of the
loop, plot the induced electric field in the loop as a function
of time.

49. The current I through a long solenoid with n turns per
meter and radius R is changing with time as given by dI/dt.
Calculate the induced electric field as a function of distance
r from the central axis of the solenoid.

50. Calculate the electric field induced both inside and
outside the solenoid of the preceding problem if
I = I0 sin ωt.

51. Over a region of radius R, there is a spatially uniform

magnetic field B→ . (See below.) At t = 0 , B = 1.0 T,
after which it decreases at a constant rate to zero in 30 s.
(a) What is the electric field in the regions where r ≤ R
and r ≥ R during that 30-s interval? (b) Assume that

R = 10.0 cm . How much work is done by the electric

field on a proton that is carried once clock wise around
a circular path of radius 5.0 cm? (c) How much work
is done by the electric field on a proton that is carried
once counterclockwise around a circular path of any radius
r ≥ R ? (d) At the instant when B = 0.50 T , a proton

enters the magnetic field at A, moving a velocity v→
⎛
⎝v = 5.0 × 106 m/s⎞

⎠ as shown. What are the electric and

magnetic forces on the proton at that instant?

52. The magnetic field at all points within the cylindrical
region whose cross-section is indicated in the
accompanying figure starts at 1.0 T and decreases
uniformly to zero in 20 s. What is the electric field (both
magnitude and direction) as a function of r, the distance
from the geometric center of the region?

53. The current in a long solenoid of radius 3 cm is varied
with time at a rate of 2 A/s. A circular loop of wire of radius
5 cm and resistance 2 Ω surrounds the solenoid. Find the

electrical current induced in the loop.

54. The current in a long solenoid of radius 3 cm and 20
turns/cm is varied with time at a rate of 2 A/s. Find the
electric field at a distance of 4 cm from the center of the
solenoid.
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13.6 Electric Generators and Back Emf

55. Design a current loop that, when rotated in a uniform
magnetic field of strength 0.10 T, will produce an emf
ε = ε0 sin ωt, where ε0 = 110 V and ω = 120π rad/s.

56. A flat, square coil of 20 turns that has sides of length
15.0 cm is rotating in a magnetic field of strength 0.050 T.
If the maximum emf produced in the coil is 30.0 mV, what
is the angular velocity of the coil?

57. A 50-turn rectangular coil with dimensions
0.15 m × 0.40 m rotates in a uniform magnetic field of

magnitude 0.75 T at 3600 rev/min. (a) Determine the emf
induced in the coil as a function of time. (b) If the coil is
connected to a 1000-Ω resistor, what is the power as a

function of time required to keep the coil turning at 3600
rpm? (c) Answer part (b) if the coil is connected to a 2000-
Ω resistor.

58. The square armature coil of an alternating current
generator has 200 turns and is 20.0 cm on side. When it
rotates at 3600 rpm, its peak output voltage is 120 V. (a)
What is the frequency of the output voltage? (b) What is the
strength of the magnetic field in which the coil is turning?

59. A flip coil is a relatively simple device used to
measure a magnetic field. It consists of a circular coil of N
turns wound with fine conducting wire. The coil is attached
to a ballistic galvanometer, a device that measures the total
charge that passes through it. The coil is placed in a

magnetic field B→ such that its face is perpendicular to

the field. It is then flipped through 180°, and the total

charge Q that flows through the galvanometer is measured.

(a) If the total resistance of the coil and galvanometer is R,
what is the relationship between B and Q? Because the coil

is very small, you can assume that B→ is uniform over

it. (b) How can you determine whether or not the magnetic
field is perpendicular to the face of the coil?

60. The flip coil of the preceding problem has a radius of
3.0 cm and is wound with 40 turns of copper wire. The total
resistance of the coil and ballistic galvanometer is 0.20 Ω.
When the coil is flipped through 180° in a magnetic field

B→ , a change of 0.090 C flows through the ballistic

galvanometer. (a) Assuming that B→ and the face of the

coil are initially perpendicular, what is the magnetic field?
(b) If the coil is flipped through 90°, what is the reading

of the galvanometer?

61. A 120-V, series-wound motor has a field resistance
of 80 Ω and an armature resistance of 10 Ω . When it is

operating at full speed, a back emf of 75 V is generated. (a)
What is the initial current drawn by the motor? When the
motor is operating at full speed, where are (b) the current
drawn by the motor, (c) the power output of the source, (d)
the power output of the motor, and (e) the power dissipated
in the two resistances?

62. A small series-wound dc motor is operated from a
12-V car battery. Under a normal load, the motor draws
4.0 A, and when the armature is clamped so that it cannot
turn, the motor draws 24 A. What is the back emf when the
motor is operating normally?

ADDITIONAL PROBLEMS

63. Shown in the following figure is a long, straight wire
and a single-turn rectangular loop, both of which lie in the
plane of the page. The wire is parallel to the long sides of
the loop and is 0.50 m away from the closer side. At an
instant when the emf induced in the loop is 2.0 V, what is
the time rate of change of the current in the wire?

64. A metal bar of mass 500 g slides outward at a constant
speed of 1.5 cm/s over two parallel rails separated by a
distance of 30 cm which are part of a U-shaped conductor.

There is a uniform magnetic field of magnitude 2 T
pointing out of the page over the entire area. The railings
and metal bar have an equivalent resistance of 150 Ω.
(a) Determine the induced current, both magnitude and
direction. (b) Find the direction of the induced current if
the magnetic field is pointing into the page. (c) Find the
direction of the induced current if the magnetic field is
pointed into the page and the bar moves inwards.

65. A current is induced in a circular loop of radius 1.5 cm
between two poles of a horseshoe electromagnet when the
current in the electromagnet is varied. The magnetic field
in the area of the loop is perpendicular to the area and has a
uniform magnitude. If the rate of change of magnetic field
is 10 T/s, find the magnitude and direction of the induced
current if resistance of the loop is 25 Ω .
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66. A metal bar of length 25 cm is placed perpendicular
to a uniform magnetic field of strength 3 T. (a) Determine
the induced emf between the ends of the rod when it is
not moving. (b) Determine the emf when the rod is moving
perpendicular to its length and magnetic field with a speed
of 50 cm/s.

67. A coil with 50 turns and area 10 cm2 is oriented with

its plane perpendicular to a 0.75-T magnetic field. If the
coil is flipped over (rotated through 180° ) in 0.20 s, what

is the average emf induced in it?

68. A 2-turn planer loop of flexible wire is placed inside
a long solenoid of n turns per meter that carries a constant
current I0 . The area A of the loop is changed by pulling

on its sides while ensuring that the plane of the loop always
remains perpendicular to the axis of the solenoid. If

n = 500 turns per meter, I0 = 20 A, and A = 20 cm2,
what is the emf induced in the loop when dA/dt = 100?

69. The conducting rod shown in the accompanying figure
moves along parallel metal rails that are 25-cm apart. The
system is in a uniform magnetic field of strength 0.75
T, which is directed into the page. The resistances of the
rod and the rails are negligible, but the section PQ has a
resistance of 0.25 Ω . (a) What is the emf (including its

sense) induced in the rod when it is moving to the right with
a speed of 5.0 m/s? (b) What force is required to keep the
rod moving at this speed? (c) What is the rate at which work
is done by this force? (d) What is the power dissipated in
the resistor?

70. A circular loop of wire of radius 10 cm is mounted
on a vertical shaft and rotated at a frequency of 5 cycles
per second in a region of uniform magnetic field of 2
Gauss perpendicular to the axis of rotation. (a) Find an
expression for the time-dependent flux through the ring. (b)
Determine the time-dependent current through the ring if it
has a resistance of 10 Ω.

71. The magnetic field between the poles of a horseshoe
electromagnet is uniform and has a cylindrical symmetry
about an axis from the middle of the South Pole to the
middle of the North Pole. The magnitude of the magnetic
field changes as a rate of dB/dt due to the changing current
through the electromagnet. Determine the electric field at a
distance r from the center.

72. A long solenoid of radius a with n turns per unit length
is carrying a time-dependent current I(t) = I0 sin(ωt) ,

where I0 and ω are constants. The solenoid is surrounded

by a wire of resistance R that has two circular loops of
radius b with b > a (see the following figure). Find the

magnitude and direction of current induced in the outer
loops at time t = 0 .

73. A 120-V, series-wound dc motor draws 0.50 A from
its power source when operating at full speed, and it draws
2.0 A when it starts. The resistance of the armature coils
is 10 Ω . (a) What is the resistance of the field coils? (b)

What is the back emf of the motor when it is running at
full speed? (c) The motor operates at a different speed and
draws 1.0 A from the source. What is the back emf in this
case?

74. The armature and field coils of a series-wound motor
have a total resistance of 3.0 Ω . When connected to a

120-V source and running at normal speed, the motor draws
4.0 A. (a) How large is the back emf? (b) What current will
the motor draw just after it is turned on? Can you suggest a
way to avoid this large initial current?
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CHALLENGE PROBLEMS

75. A copper wire of length L is fashioned into a circular
coil with N turns. When the magnetic field through the coil
changes with time, for what value of N is the induced emf a
maximum?

76. A 0.50-kg copper sheet drops through a uniform
horizontal magnetic field of 1.5 T, and it reaches a terminal
velocity of 2.0 m/s. (a) What is the net magnetic force on
the sheet after it reaches terminal velocity? (b) Describe
the mechanism responsible for this force. (c) How much
power is dissipated as Joule heating while the sheet moves
at terminal velocity?

77. A circular copper disk of radius 7.5 cm rotates at 2400
rpm around the axis through its center and perpendicular

to its face. The disk is in a uniform magnetic field B→

of strength 1.2 T that is directed along the axis. What is
the potential difference between the rim and the axis of the
disk?

78. A short rod of length a moves with its velocity v→

parallel to an infinite wire carrying a current I (see below).
If the end of the rod nearer the wire is a distance b from the
wire, what is the emf induced in the rod?

79. A rectangular circuit containing a resistance R is

pulled at a constant velocity v→ away from a long,

straight wire carrying a current I0 (see below). Derive an

equation that gives the current induced in the circuit as
a function of the distance x between the near side of the
circuit and the wire.

80. Two infinite solenoids cross the plane of the circuit
as shown below. The radii of the solenoids are 0.10 and
0.20 m, respectively, and the current in each solenoid is
changing such that dB/dt = 50.0 T/s. What are the

currents in the resistors of the circuit?

81. An eight-turn coil is tightly wrapped around the
outside of the long solenoid as shown below. The radius of
the solenoid is 2.0 cm and it has 10 turns per centimeter.
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The current through the solenoid increases according to
I = I0(1 − e−αt), where I0 = 4.0 A and

α = 2.0 × 10−2 s−1. What is the emf induced in the coil

when (a) t = 0 , (b) t = 1.0 × 102 s, and (c) t → ∞?

82. Shown below is a long rectangular loop of width w,
length l, mass m, and resistance R. The loop starts from rest

at the edge of a uniform magnetic field B→ and is pushed

into the field by a constant force F→ . Calculate the speed

of the loop as a function of time.

83. A square bar of mass m and resistance R is sliding
without friction down very long, parallel conducting rails
of negligible resistance (see below). The two rails are a
distance l apart and are connected to each other at the
bottom of the incline by a zero-resistance wire. The rails
are inclined at an angle θ , and there is a uniform vertical

magnetic field B→ throughout the region. (a) Show that

the bar acquires a terminal velocity given by

v = mgR sin θ
B2 l2 cos2 θ

. (b) Calculate the work per unit time

done by the force of gravity. (c) Compare this with the
power dissipated in the Joule heating of the bar. (d) What

would happen if B→ were reversed?

84. The accompanying figure shows a metal disk of inner
radius r1 and other radius r2 rotating at an angular

velocity ω→ while in a uniform magnetic field directed

parallel to the rotational axis. The brush leads of a
voltmeter are connected to the dark’s inner and outer
surfaces as shown. What is the reading of the voltmeter?

85. A long solenoid with 10 turns per centimeter is placed
inside a copper ring such that both objects have the same
central axis. The radius of the ring is 10.0 cm, and the
radius of the solenoid is 5.0 cm. (a) What is the emf induced
in the ring when the current I through the solenoid is 5.0
A and changing at a rate of 100 A/s? (b) What is the
emf induced in the ring when I = 2.0 A and

dI/dt = 100 A/s? (c) What is the electric field inside the

ring for these two cases? (d) Suppose the ring is moved so
that its central axis and the central axis of the solenoid are
still parallel but no longer coincide. (You should assume
that the solenoid is still inside the ring.) Now what is the
emf induced in the ring? (e) Can you calculate the electric
field in the ring as you did in part (c)?

86. The current in the long, straight wire shown in the
accompanying figure is given by I = I0 sin ωt, where
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I0 = 15 A and ω = 120π rad/s. What is the current

induced in the rectangular loop at (a) t = 0 and (b)

t = 2.1 × 10−3 s? The resistance of the loop is 2.0 Ω.

87. A 500-turn coil with a 0.250-m2 area is spun in

Earth’s 5.00 × 10−5 T magnetic field, producing a

12.0-kV maximum emf. (a) At what angular velocity must
the coil be spun? (b) What is unreasonable about this
result? (c) Which assumption or premise is responsible?

88. A circular loop of wire of radius 10 cm is mounted
on a vertical shaft and rotated at a frequency of 5 cycles
per second in a region of uniform magnetic field of

2 × 10−4 T perpendicular to the axis of rotation. (a) Find

an expression for the time-dependent flux through the ring
(b) Determine the time-dependent current through the ring
if it has a resistance of 10 Ω .

89. A long solenoid of radius a with n turns per unit

length is carrying a time-dependent current
I(t) = I0 sin ωt where I0 and ω are constants. The

solenoid is surrounded by a wire of resistance R that has
two circular loops of radius b with b > a . Find the

magnitude and direction of current induced in the outer
loops at time t = 0 .

90. A rectangular copper loop of mass 100 g and
resistance 0.2 Ω is in a region of uniform magnetic field

that is perpendicular to the area enclosed by the ring and
horizontal to Earth’s surface (see below). The loop is let go
from rest when it is at the edge of the nonzero magnetic
field region. (a) Find an expression for the speed when
the loop just exits the region of uniform magnetic field.
(b) If it was let go at t = 0 , what is the time when it

exits the region of magnetic field for the following values:

a = 25 cm, b = 50 cm, B = 3 T , g = 9.8 m/s2 ? Assume

that the magnetic field of the induced current is negligible
compared to 3 T.

91. A metal bar of mass m slides without friction over two
rails a distance D apart in the region that has a uniform
magnetic field of magnitude B0 and direction

perpendicular to the rails (see below). The two rails are
connected at one end to a resistor whose resistance is much
larger than the resistance of the rails and the bar. The bar
is given an initial speed of v0 . It is found to slow down.

How far does the bar go before coming to rest? Assume
that the magnetic field of the induced current is negligible
compared to B0 .

92. A time-dependent uniform magnetic field of
magnitude B(t) is confined in a cylindrical region of radius
R. A conducting rod of length 2D is placed in the region,
as shown below. Show that the emf between the ends of

the rod is given by dB
dt D R2 − D2 . (Hint: To find the emf

between the ends, we need to integrate the electric field
from one end to the other. To find the electric field, use
Faraday’s law as “Ampère’s law for E.”)
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