
14.1

Strategy

There is no magnetic field outside the solenoid, and the field inside has magnitude B1 = µ0(N1 /l1)I1 and is

directed parallel to the solenoid’s axis. We can use this magnetic field to find the magnetic flux through the
surrounding coil and then use this flux to calculate the mutual inductance for part (a), using Equation 14.3.
We solve part (b) by calculating the mutual inductance from the given quantities and using Equation 14.4 to
calculate the induced emf.

Solution
a. The magnetic flux Φ21 through the surrounding coil is

Φ21 = B1 πR1
2 = µ0 N1 I1

l1
πR1

2.

Now from Equation 14.3, the mutual inductance is

M = N2 Φ21
I1

= ⎛
⎝

N2
I1

⎞
⎠
⎛
⎝

µ0 N1 I1
l1

⎞
⎠πR1

2 =
µ0 N1 N2 πR1

2

l1
.

b. Using the previous expression and the given values, the mutual inductance is

M = (4π × 10−7 T · m/A)(500)(10)π(0.0310 m)2

0.750 m
= 2.53 × 10−5 H.

Thus, from Equation 14.4, the emf induced in the surrounding coil is

ε2 = −MdI1
dt = −(2.53 × 10−5 H)(200 A/s)

= −5.06 × 10−3 V.

Significance

Notice that M in part (a) is independent of the radius R2 of the surrounding coil because the solenoid’s magnetic

field is confined to its interior. In principle, we can also calculate M by finding the magnetic flux through the
solenoid produced by the current in the surrounding coil. This approach is much more difficult because Φ12 is

so complicated. However, since M12 = M21, we do know the result of this calculation.

Check Your Understanding A current I(t) = (5.0 A) sin ((120π rad/s)t) flows through the solenoid of

part (b) of Example 14.1. What is the maximum emf induced in the surrounding coil?

14.2 | Self-Inductance and Inductors

Learning Objectives

By the end of this section, you will be able to:

• Correlate the rate of change of current to the induced emf created by that current in the same
circuit

• Derive the self-inductance for a cylindrical solenoid

• Derive the self-inductance for a rectangular toroid

Mutual inductance arises when a current in one circuit produces a changing magnetic field that induces an emf in another
circuit. But can the magnetic field affect the current in the original circuit that produced the field? The answer is yes, and
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this is the phenomenon called self-inductance.

Inductors
Figure 14.5 shows some of the magnetic field lines due to the current in a circular loop of wire. If the current is constant,
the magnetic flux through the loop is also constant. However, if the current I were to vary with time—say, immediately after
switch S is closed—then the magnetic flux Φm would correspondingly change. Then Faraday’s law tells us that an emf ε
would be induced in the circuit, where

(14.6)ε = − dΦm
dt .

Since the magnetic field due to a current-carrying wire is directly proportional to the current, the flux due to this field is also
proportional to the current; that is,

(14.7)Φm ∝ I.

Figure 14.5 A magnetic field is produced by the current I in
the loop. If I were to vary with time, the magnetic flux through
the loop would also vary and an emf would be induced in the
loop.

This can also be written as

(14.8)Φm = LI

where the constant of proportionality L is known as the self-inductance of the wire loop. If the loop has N turns, this
equation becomes

(14.9)NΦm = LI.

By convention, the positive sense of the normal to the loop is related to the current by the right-hand rule, so in Figure
14.5, the normal points downward. With this convention, Φm is positive in Equation 14.9, so L always has a positive

value.

For a loop with N turns, ε = −NdΦm /dt, so the induced emf may be written in terms of the self-inductance as

(14.10)ε = −LdI
dt .

When using this equation to determine L, it is easiest to ignore the signs of ε and dI/dt, and calculate L as

L = |ε|
|dI/dt|.

Since self-inductance is associated with the magnetic field produced by a current, any configuration of conductors possesses
self-inductance. For example, besides the wire loop, a long, straight wire has self-inductance, as does a coaxial cable. A
coaxial cable is most commonly used by the cable television industry and may also be found connecting to your cable
modem. Coaxial cables are used due to their ability to transmit electrical signals with minimal distortions. Coaxial cables
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have two long cylindrical conductors that possess current and a self-inductance that may have undesirable effects.

A circuit element used to provide self-inductance is known as an inductor. It is represented by the symbol shown in
Figure 14.6, which resembles a coil of wire, the basic form of the inductor. Figure 14.7 shows several types of inductors
commonly used in circuits.

Figure 14.6 Symbol used to represent an inductor in a circuit.

Figure 14.7 A variety of inductors. Whether they are encapsulated like the top three shown or
wound around in a coil like the bottom-most one, each is simply a relatively long coil of wire.
(credit: Windell Oskay)

In accordance with Lenz’s law, the negative sign in Equation 14.10 indicates that the induced emf across an inductor
always has a polarity that opposes the change in the current. For example, if the current flowing from A to B in Figure
14.8(a) were increasing, the induced emf (represented by the imaginary battery) would have the polarity shown in order
to oppose the increase. If the current from A to B were decreasing, then the induced emf would have the opposite polarity,
again to oppose the change in current (Figure 14.8(b)). Finally, if the current through the inductor were constant, no emf
would be induced in the coil.

Figure 14.8 The induced emf across an inductor always acts to oppose the change in the
current. This can be visualized as an imaginary battery causing current to flow to oppose the
change in (a) and reinforce the change in (b).

One common application of inductance is to allow traffic signals to sense when vehicles are waiting at a street intersection.
An electrical circuit with an inductor is placed in the road underneath the location where a waiting car will stop. The body
of the car increases the inductance and the circuit changes, sending a signal to the traffic lights to change colors. Similarly,
metal detectors used for airport security employ the same technique. A coil or inductor in the metal detector frame acts
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as both a transmitter and a receiver. The pulsed signal from the transmitter coil induces a signal in the receiver. The self-
inductance of the circuit is affected by any metal object in the path (Figure 14.9). Metal detectors can be adjusted for
sensitivity and can also sense the presence of metal on a person.

Figure 14.9 The familiar security gate at an airport not only detects metals,
but can also indicate their approximate height above the floor. (credit:
“Alexbuirds”/Wikimedia Commons)

Large induced voltages are found in camera flashes. Camera flashes use a battery, two inductors that function as a
transformer, and a switching system or oscillator to induce large voltages. Recall from Oscillations (http://cnx.org/
content/m58360/latest/) on oscillations that “oscillation” is defined as the fluctuation of a quantity, or repeated regular
fluctuations of a quantity, between two extreme values around an average value. Also recall (from Electromagnetic
Induction on electromagnetic induction) that we need a changing magnetic field, brought about by a changing current, to
induce a voltage in another coil. The oscillator system does this many times as the battery voltage is boosted to over 1000
volts. (You may hear the high-pitched whine from the transformer as the capacitor is being charged.) A capacitor stores the
high voltage for later use in powering the flash.

Example 14.2

Self-Inductance of a Coil

An induced emf of 2.0 V is measured across a coil of 50 closely wound turns while the current through it increases
uniformly from 0.0 to 5.0 A in 0.10 s. (a) What is the self-inductance of the coil? (b) With the current at 5.0 A,
what is the flux through each turn of the coil?

Strategy

Both parts of this problem give all the information needed to solve for the self-inductance in part (a) or the flux
through each turn of the coil in part (b). The equations needed are Equation 14.10 for part (a) and Equation
14.9 for part (b).

Solution
a. Ignoring the negative sign and using magnitudes, we have, from Equation 14.10,

L = ε
dI/dt = 2.0 V

5.0 A/0.10 s = 4.0 × 10−2 H.

b. From Equation 14.9, the flux is given in terms of the current by Φm = LI/N, so

Φm = (4.0 × 10−2 H)(5.0 A)
50 turns = 4.0 × 10−3 Wb.
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14.2

14.3

Significance

The self-inductance and flux calculated in parts (a) and (b) are typical values for coils found in contemporary
devices. If the current is not changing over time, the flux is not changing in time, so no emf is induced.

Check Your Understanding Current flows through the inductor in Figure 14.8 from B to A instead of
from A to B as shown. Is the current increasing or decreasing in order to produce the emf given in diagram (a)?
In diagram (b)?

Check Your Understanding A changing current induces an emf of 10 V across a 0.25-H inductor.
What is the rate at which the current is changing?

A good approach for calculating the self-inductance of an inductor consists of the following steps:

Problem-Solving Strategy: Self-Inductance

1. Assume a current I is flowing through the inductor.

2. Determine the magnetic field B→ produced by the current. If there is appropriate symmetry, you may be able

to do this with Ampère’s law.

3. Obtain the magnetic flux, Φm.

4. With the flux known, the self-inductance can be found from Equation 14.9, L = NΦm /I .

To demonstrate this procedure, we now calculate the self-inductances of two inductors.

Cylindrical Solenoid
Consider a long, cylindrical solenoid with length l, cross-sectional area A, and N turns of wire. We assume that the length of
the solenoid is so much larger than its diameter that we can take the magnetic field to be B = µ0 nI throughout the interior

of the solenoid, that is, we ignore end effects in the solenoid. With a current I flowing through the coils, the magnetic field
produced within the solenoid is

(14.11)B = µ0
⎛
⎝
N
l

⎞
⎠I,

so the magnetic flux through one turn is

(14.12)Φm = BA = µ0 NA
l I.

Using Equation 14.9, we find for the self-inductance of the solenoid,

(14.13)
Lsolenoid = NΦm

I = µ0 N 2 A
l .

If n = N/l is the number of turns per unit length of the solenoid, we may write Equation 14.13 as

(14.14)
L = µ0

⎛
⎝
N
l

⎞
⎠

2
Al = µ0 n2 Al = µ0 n2(V),

where V = Al is the volume of the solenoid. Notice that the self-inductance of a long solenoid depends only on its physical

properties (such as the number of turns of wire per unit length and the volume), and not on the magnetic field or the current.
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14.4

14.5

This is true for inductors in general.

Rectangular Toroid
A toroid with a rectangular cross-section is shown in Figure 14.10. The inner and outer radii of the toroid are
R1 and R2, and h is the height of the toroid. Applying Ampère’s law in the same manner as we did in Example 13.8 for

a toroid with a circular cross-section, we find the magnetic field inside a rectangular toroid is also given by

(14.15)B = µ0 NI
2πr ,

where r is the distance from the central axis of the toroid. Because the field changes within the toroid, we must calculate the
flux by integrating over the toroid’s cross-section. Using the infinitesimal cross-sectional area element da = h dr shown

in Figure 14.10, we obtain

(14.16)
Φm = ∫ B da = ⌠

⌡R1

R2⎛
⎝

µ0 NI
2πr

⎞
⎠(hdr) = µ0 NhI

2π ln R2
R1

.

Figure 14.10 Calculating the self-inductance of a rectangular toroid.

Now from Equation 14.16, we obtain for the self-inductance of a rectangular toroid

(14.17)
L = NΦm

I = µ0 N 2 h
2π ln R2

R1
.

As expected, the self-inductance is a constant determined by only the physical properties of the toroid.

Check Your Understanding (a) Calculate the self-inductance of a solenoid that is tightly wound with

wire of diameter 0.10 cm, has a cross-sectional area of 0.90 cm2 , and is 40 cm long. (b) If the current through

the solenoid decreases uniformly from 10 to 0 A in 0.10 s, what is the emf induced between the ends of the
solenoid?

Check Your Understanding (a) What is the magnetic flux through one turn of a solenoid of self-

inductance 8.0 × 10−5 H when a current of 3.0 A flows through it? Assume that the solenoid has 1000 turns

and is wound from wire of diameter 1.0 mm. (b) What is the cross-sectional area of the solenoid?
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