
backward displacements because the feet are not very long. Muscles are used extensively to balance the body in the front-to-back
direction. (b) While bending in the manner shown, stability is increased by lowering the center of gravity. Stability is also increased if the
base is expanded by placing the feet farther apart.

Animals such as chickens have easier systems to control. Figure 9.17 shows that the cg of a chicken lies below its
hip joints and between its widely separated and broad feet. Even relatively large displacements of the chicken’s cg
are stable and result in restoring forces and torques that return the cg to its equilibrium position with little effort on
the chicken’s part. Not all birds are like chickens, of course. Some birds, such as the flamingo, have balance systems
that are almost as sophisticated as that of humans.

Figure 9.17 shows that the cg of a chicken is below the hip joints and lies above a broad base of support formed by
widely-separated and large feet. Hence, the chicken is in very stable equilibrium, since a relatively large
displacement is needed to render it unstable. The body of the chicken is supported from above by the hips and acts
as a pendulum between the hips. Therefore, the chicken is stable for front-to-back displacements as well as for
side-to-side displacements.

FIGURE 9.17 The center of gravity of a chicken is below the hip joints. The chicken is in stable equilibrium. The body of the chicken is
supported from above by the hips and acts as a pendulum between them.

Engineers and architects strive to achieve extremely stable equilibriums for buildings and other systems that must
withstand wind, earthquakes, and other forces that displace them from equilibrium. Although the examples in this
section emphasize gravitational forces, the basic conditions for equilibrium are the same for all types of forces. The
net external force must be zero, and the net torque must also be zero.

9.4 Applications of Statics, Including Problem-Solving Strategies
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Discuss the applications of Statics in real life.
• State and discuss various problem-solving strategies in Statics.

Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain.
We begin with a discussion of problem-solving strategies specifically used for statics. Since statics is a special case
of Newton’s laws, both the general problem-solving strategies and the special strategies for Newton’s laws,
discussed in Problem-Solving Strategies, still apply.

Take-Home Experiment

Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels
and bottom against the wall, to touch your toes. Can you do this without toppling over? Explain why and what
you need to do to be able to touch your toes without losing your balance. Is it easier for a woman to do this?

Problem-Solving Strategy: Static Equilibrium Situations

1. The first step is to determine whether or not the system is in static equilibrium. This condition is always the
case when the acceleration of the system is zero and accelerated rotation does not occur.
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Now let us apply this problem-solving strategy for the pole vaulter shown in the three figures below. The pole is
uniform and has a mass of 5.00 kg. In Figure 9.18, the pole’s cg lies halfway between the vaulter’s hands. It seems
reasonable that the force exerted by each hand is equal to half the weight of the pole, or 24.5 N. This obviously
satisfies the first condition for equilibrium . The second condition is also satisfied, as we can
see by choosing the cg to be the pivot point. The weight exerts no torque about a pivot point located at the cg, since
it is applied at that point and its lever arm is zero. The equal forces exerted by the hands are equidistant from the
chosen pivot, and so they exert equal and opposite torques. Similar arguments hold for other systems where
supporting forces are exerted symmetrically about the cg. For example, the four legs of a uniform table each support
one-fourth of its weight.

In Figure 9.18, a pole vaulter holding a pole with its cg halfway between his hands is shown. Each hand exerts a
force equal to half the weight of the pole, . (b) The pole vaulter moves the pole to his left, and the
forces that the hands exert are no longer equal. See Figure 9.18. If the pole is held with its cg to the left of the
person, then he must push down with his right hand and up with his left. The forces he exerts are larger here
because they are in opposite directions and the cg is at a long distance from either hand.

Similar observations can be made using a meter stick held at different locations along its length.

FIGURE 9.18 A pole vaulter holds a pole horizontally with both hands.

2. It is particularly important to draw a free body diagram for the system of interest. Carefully label all forces,
and note their relative magnitudes, directions, and points of application whenever these are known.

3. Solve the problem by applying either or both of the conditions for equilibrium (represented by the equations
and , depending on the list of known and unknown factors. If the second condition is

involved, choose the pivot point to simplify the solution. Any pivot point can be chosen, but the most useful
ones cause torques by unknown forces to be zero. (Torque is zero if the force is applied at the pivot (then

), or along a line through the pivot point (then )). Always choose a convenient coordinate system
for projecting forces.

4. Check the solution to see if it is reasonable by examining the magnitude, direction, and units of the answer.
The importance of this last step never diminishes, although in unfamiliar applications, it is usually more
difficult to judge reasonableness. These judgments become progressively easier with experience.
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FIGURE 9.19 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is near his right hand.

FIGURE 9.20 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is to the left side of the vaulter.

If the pole vaulter holds the pole as shown in Figure 9.19, the situation is not as simple. The total force he exerts is
still equal to the weight of the pole, but it is not evenly divided between his hands. (If , then the torques
about the cg would not be equal since the lever arms are different.) Logically, the right hand should support more
weight, since it is closer to the cg. In fact, if the right hand is moved directly under the cg, it will support all the
weight. This situation is exactly analogous to two people carrying a load; the one closer to the cg carries more of its
weight. Finding the forces and is straightforward, as the next example shows.

If the pole vaulter holds the pole from near the end of the pole (Figure 9.20), the direction of the force applied by the
right hand of the vaulter reverses its direction.

EXAMPLE 9.2

What Force Is Needed to Support a Weight Held Near Its CG?
For the situation shown in Figure 9.19, calculate: (a) , the force exerted by the right hand, and (b) , the force
exerted by the left hand. The hands are 0.900 m apart, and the cg of the pole is 0.600 m from the left hand.

Strategy

Figure 9.19 includes a free body diagram for the pole, the system of interest. There is not enough information to use
the first condition for equilibrium ), since two of the three forces are unknown and the hand forces cannot
be assumed to be equal in this case. There is enough information to use the second condition for equilibrium

if the pivot point is chosen to be at either hand, thereby making the torque from that hand zero. We
choose to locate the pivot at the left hand in this part of the problem, to eliminate the torque from the left hand.

Solution for (a)

There are now only two nonzero torques, those from the gravitational force ( ) and from the push or pull of the
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right hand ( ). Stating the second condition in terms of clockwise and counterclockwise torques,

or the algebraic sum of the torques is zero.

Here this is

since the weight of the pole creates a counterclockwise torque and the right hand counters with a clockwise torque.
Using the definition of torque, , noting that , and substituting known values, we obtain

Thus,

Solution for (b)

The first condition for equilibrium is based on the free body diagram in the figure. This implies that by Newton’s
second law:

From this we can conclude:

Solving for , we obtain

Discussion

is seen to be exactly half of , as we might have guessed, since is applied twice as far from the cg as .

If the pole vaulter holds the pole as he might at the start of a run, shown in Figure 9.20, the forces change again.
Both are considerably greater, and one force reverses direction.

PHET EXPLORATIONS

Balancing Act
Play with objects on a teeter totter to learn about balance. Test what you've learned by trying the Balance Challenge
game.

Click to view content (https://openstax.org/books/college-physics-2e/pages/9-4-applications-of-statics-including-
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Take-Home Experiment

This is an experiment to perform while standing in a bus or a train. Stand facing sideways. How do you move
your body to readjust the distribution of your mass as the bus accelerates and decelerates? Now stand facing
forward. How do you move your body to readjust the distribution of your mass as the bus accelerates and
decelerates? Why is it easier and safer to stand facing sideways rather than forward? Note: For your safety (and
those around you), make sure you are holding onto something while you carry out this activity!
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9.5 Simple Machines
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Describe different simple machines.
• Calculate the mechanical advantage.

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of
a distance through which we apply the force. The word for “machine” comes from the Greek word meaning “to help
make things easier.” Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still
conserved for these devices because a machine cannot do more work than the energy put into it. However,
machines can reduce the input force that is needed to perform the job. The ratio of output to input force magnitudes
for any simple machine is called its mechanical advantage (MA).

One of the simplest machines is the lever, which is a rigid bar pivoted at a fixed place called the fulcrum. Torques are
involved in levers, since there is rotation about a pivot point. Distances from the physical pivot of the lever are
crucial, and we can obtain a useful expression for the MA in terms of these distances.

FIGURE 9.21 A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid
arrows. The force that the nail puller applies to the nail ( ) is not a force on the nail puller. The reaction force the nail exerts back on the
puller ( ) is an external force and is equal and opposite to . The perpendicular lever arms of the input and output forces are and .

Figure 9.21 shows a lever type that is used as a nail puller. Crowbars, seesaws, and other such levers are all
analogous to this one. is the input force and is the output force. There are three vertical forces acting on the
nail puller (the system of interest) – these are and . is the reaction force back on the system, equal and
opposite to . (Note that is not a force on the system.) is the normal force upon the lever, and its torque is
zero since it is exerted at the pivot. The torques due to and must be equal to each other if the nail is not
moving, to satisfy the second condition for equilibrium . (In order for the nail to actually move, the torque
due to must be ever-so-slightly greater than torque due to .) Hence,

Notice that is the distance from the pivot point to the point where the input force is applied, and (not
labeled on the diagram) is the distance from the pivot point to the point where the output force is applied. The
distances and are the perpendicular components of the distances from where the input and output forces are
applied to the pivot, as shown in the figure. Rearranging the last equation gives
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