
lying flat on ice. The net external force is zero in both situations shown in the figure; but in one case, equilibrium is
achieved, whereas in the other, it is not. In Figure 9.4, the ice hockey stick remains motionless. But in Figure 9.5,
with the same forces applied in different places, the stick experiences accelerated rotation. Therefore, we know that
the point at which a force is applied is another factor in determining whether or not equilibrium is achieved. This will
be explored further in the next section.

FIGURE 9.4 An ice hockey stick lying flat on ice with two equal and opposite horizontal forces applied to it. Friction is negligible, and the
gravitational force is balanced by the support of the ice (a normal force). Thus, . Equilibrium is achieved, which is static
equilibrium in this case.

FIGURE 9.5 The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here
but the system is not at equilibrium. Hence, the is a necessary—but not sufficient—condition for achieving equilibrium.

PHET EXPLORATIONS

Torque
Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration,
moment of inertia, angular momentum and torque.

Click to view content (https://openstax.org/l/21angmomintsim).

9.2 The Second Condition for Equilibrium
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• State the second condition that is necessary to achieve equilibrium.
• Explain torque and the factors on which it depends.
• Describe the role of torque in rotational mechanics.

Torque

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a
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Several familiar factors determine how effective you are in opening the door. See Figure 9.6. First of all, the larger
the force, the more effective it is in opening the door—obviously, the harder you push, the more rapidly the door
opens. Also, the point at which you push is crucial. If you apply your force too close to the hinges, the door will open
slowly, if at all. Most people have been embarrassed by making this mistake and bumping up against a door when it
did not open as quickly as expected. Finally, the direction in which you push is also important. The most effective
direction is perpendicular to the door—we push in this direction almost instinctively.

FIGURE 9.6 Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from
overhead). Torque has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will
rotate in a counterclockwise due to . Note that is the perpendicular distance of the pivot from the line of action of the force. (b) A
smaller counterclockwise torque is produced by a smaller force acting at the same distance from the hinges (the pivot point). (c) The
same force as in (a) produces a smaller counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as
in (a), but acting in the opposite direction, produces a clockwise torque. (e) A smaller counterclockwise torque is produced by the same
magnitude force acting at the same point but in a different direction. Here, is less than . (f) Torque is zero here since the force just pulls
on the hinges, producing no rotation. In this case, .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical
quantity called torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in
changing or accelerating a rotation (changing the angular velocity over a period of time). In equation form, the
magnitude of torque is defined to be

where (the Greek letter tau) is the symbol for torque, is the distance from the pivot point to the point where the
force is applied, is the magnitude of the force, and is the angle between the force and the vector directed from
the point of application to the pivot point, as seen in Figure 9.6 and Figure 9.7. An alternative expression for torque
is given in terms of the perpendicular lever arm as shown in Figure 9.6 and Figure 9.7, which is defined as

so that

constant angular velocity). A rotating body or system can be in equilibrium if its rate of rotation is constant and
remains unchanged by the forces acting on it. To understand what factors affect rotation, let us think about what
happens when you open an ordinary door by rotating it on its hinges.

9.3

9.4

9.5

360 9 • Statics and Torque

Access for free at openstax.org



FIGURE 9.7 A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three factors , ,
and for pivot point A on a body are shown here— is the distance from the chosen pivot point to the point where the force is applied,
and is the angle between and the vector directed from the point of application to the pivot point. If the object can rotate around point A,
it will rotate counterclockwise. This means that torque is counterclockwise relative to pivot A. (b) In this case, point B is the pivot point. The
torque from the applied force will cause a clockwise rotation around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm is the shortest distance from the pivot point to the line along which acts; it is
shown as a dashed line in Figure 9.6 and Figure 9.7. Note that the line segment that defines the distance is
perpendicular to , as its name implies. It is sometimes easier to find or visualize than to find both and . In
such cases, it may be more convenient to use rather than for torque, but both are equally
valid.

The SI unit of torque is newtons times meters, usually written as . For example, if you push perpendicular to
the door with a force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of 32 N·m(0.800 m × 40 N
× sin 90º) relative to the hinges. If you reduce the force to 20 N, the torque is reduced to , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different
choice for the location of the pivot will give you a different value for the torque, since both and depend on the
location of the pivot. Any point in any object can be chosen to calculate the torque about that point. The object may
not actually pivot about the chosen “pivot point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise
relative to the chosen pivot point, as illustrated for points B and A, respectively, in Figure 9.7. If the object can rotate
about point A, it will rotate counterclockwise, which means that the torque for the force is shown as
counterclockwise relative to A. But if the object can rotate about point B, it will rotate clockwise, which means the
torque for the force shown is clockwise relative to B. Also, the magnitude of the torque is greater when the lever arm
is longer.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be
zero. An external torque is one that is created by an external force. You can choose the point around which the
torque is calculated. The point can be the physical pivot point of a system or any other point in space—but it must be
the same point for all torques. If the second condition (net external torque on a system is zero) is satisfied for one
choice of pivot point, it will also hold true for any other choice of pivot point in or out of the system of interest. (This
is true only in an inertial frame of reference.) The second condition necessary to achieve equilibrium is stated in
equation form as

where net means total. Torques, which are in opposite directions are assigned opposite signs. A common
convention is to call counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 9.8, they satisfy the two conditions for equilibrium. Most
people have perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a
heavier child can keep a lighter one off the ground indefinitely.

9.6
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FIGURE 9.8 Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot to create a
torque equal in magnitude to that of the heavier child.

EXAMPLE 9.1

She Saw Torques On A Seesaw
The two children shown in Figure 9.8 are balanced on a seesaw of negligible mass. (This assumption is made to
keep the example simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m
from the pivot.(a) If the second child has a mass of 32.0 kg, how far is she from the pivot? (b) What is , the
supporting force exerted by the pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition
(regarding torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second
condition for equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the
supporting pivot to be the point about which the torques are calculated. We then identify all external forces acting
on the system.

Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of the
pivot. Let us examine the torque produced by each. Torque is defined to be

Here , so that for all three forces. That means for all three. The torques exerted by the
three forces are first,

second,

and third,

Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore
negative by convention. Since acts directly on the pivot point, the distance is zero. A force acting on the pivot
cannot cause a rotation, just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second
condition for equilibrium is that the sum of the torques on both children is zero. Therefore
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or

Weight is mass times the acceleration due to gravity. Entering for , we get

Solve this for the unknown :

The quantities on the right side of the equation are known; thus, is

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force . The easiest way to find it is to use the first condition for equilibrium, which is

The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the
condition can be written as

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and
minus signs to indicate the directions of the forces, we see that

This equation yields what might have been guessed at the beginning:

So, the pivot supplies a supporting force equal to the total weight of the system:

Entering known values gives

Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the
two children. Part (b) can also be solved using the second condition for equilibrium, since both distances are known,
but only if the pivot point is chosen to be somewhere other than the location of the seesaw’s actual pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around
which torques are calculated simplified the problem. Since is exerted on the pivot point, its lever arm is zero.
Hence, the torque exerted by the supporting force is zero relative to that pivot point. The second condition for
equilibrium holds for any choice of pivot point, and so we choose the pivot point to simplify the solution of the
problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will
not always be the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force
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were exerted at a single point. This is not an approximation—the distances and are the distances to points
directly below the center of gravity of each child. As we shall see in the next section, the mass and weight of a
system can act as if they are located at a single point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in
rotational motion that force plays in linear motion. We will examine this in the next chapter.

9.3 Stability
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• State the types of equilibrium.
• Describe stable and unstable equilibriums.
• Describe neutral equilibrium.

It is one thing to have a system in equilibrium; it is quite another for it to be stable. The toy doll perched on the
man’s hand in Figure 9.9, for example, is not in stable equilibrium. There are three types of equilibrium: stable,
unstable, and neutral. Figures throughout this module illustrate various examples.

Figure 9.9 presents a balanced system, such as the toy doll on the man’s hand, which has its center of gravity (cg)
directly over the pivot, so that the torque of the total weight is zero. This is equivalent to having the torques of the
individual parts balanced about the pivot point, in this case the hand. The cgs of the arms, legs, head, and torso are
labeled with smaller type.

FIGURE 9.9 A man balances a toy doll on one hand.

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque
in a direction opposite to the direction of the displacement. For example, a marble at the bottom of a bowl will
experience a restoring force when displaced from its equilibrium position. This force moves it back toward the
equilibrium position. Most systems are in stable equilibrium, especially for small displacements. For another
example of stable equilibrium, see the pencil in Figure 9.10.

Take-Home Experiment

Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance
on the round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where
would you need to put two pennies to balance? Three pennies?
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