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7.5 Nonconservative Forces
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define nonconservative forces and explain how they affect mechanical energy.
• Show how the principle of conservation of energy can be applied by treating the conservative forces in

terms of their potential energies and any nonconservative forces in terms of the work they do.

Nonconservative Forces and Friction

Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and
Potential Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good
example of a nonconservative force. As illustrated in Figure 7.13, work done against friction depends on the length
of the path between the starting and ending points. Because of this dependence on path, there is no potential
energy associated with nonconservative forces. An important characteristic is that the work done by a
nonconservative force adds or removes mechanical energy from a system. Friction, for example, creates thermal
energy that dissipates, removing energy from the system. Furthermore, even if the thermal energy is retained or
captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense as well.

FIGURE 7.13 The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work
done against friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction,
and most of the work goes into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended
cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy

Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a
stop by friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its
mechanical energy. Figure 7.14 compares the effects of conservative and nonconservative forces. We often choose
to understand simpler systems such as that described in Figure 7.14(a) first before studying more complicated
systems as in Figure 7.14(b).
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FIGURE 7.14 Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system
with only conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance)
because the force in the spring is conservative. The spring can propel the rock back to its original height, where it once again has only
potential energy due to gravity. (b) A system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by
nonconservative forces that dissipate its mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical
energy.

How the Work-Energy Theorem Applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces
act. We will see that the work done by nonconservative forces equals the change in the mechanical energy of a
system. As noted in Kinetic Energy and the Work-Energy Theorem, the work-energy theorem states that the net
work on a system equals the change in its kinetic energy, or . The net work is the sum of the work by
nonconservative forces plus the work by conservative forces. That is,

so that

where is the total work done by all nonconservative forces and is the total work done by all conservative
forces.

FIGURE 7.15 A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the
crate; both forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by
the person is greater than the work done by friction.

Consider Figure 7.15, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous
section, we note that work done by a conservative force comes from a loss of gravitational potential energy, so that

. Substituting this equation into the previous one and solving for gives

This equation means that the total mechanical energy changes by exactly the amount of work done by
nonconservative forces. In Figure 7.15, this is the work done by the person minus the work done by friction. So even
if energy is not conserved for the system of interest (such as the crate), we know that an equal amount of work was
done to cause the change in total mechanical energy.
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We rearrange to obtain

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If
is positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in

Figure 7.15. If is negative, then mechanical energy is decreased, such as when the rock hits the ground in
Figure 7.14(b). If is zero, then mechanical energy is conserved, and nonconservative forces are balanced. For
example, when you push a lawn mower at constant speed on level ground, your work done is removed by the work
of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying amounts to applying the
work-energy theorem by setting the change in kinetic energy to be equal to the net work done on the system, which
in the most general case includes both conservative and nonconservative forces. But when seeking instead to find a
change in total mechanical energy in situations that involve changes in both potential and kinetic energy, the
previous equation says that you can start by finding the change in mechanical
energy that would have resulted from just the conservative forces, including the potential energy changes, and add
to it the work done, with the proper sign, by any nonconservative forces involved.

EXAMPLE 7.9

Calculating Distance Traveled: How Far a Baseball Player Slides
Consider the situation shown in Figure 7.16, where a baseball player slides to a stop on level ground. Using energy
considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and
the force of friction against him is a constant 450 N.

FIGURE 7.16 The baseball player slides to a stop in a distance . In the process, friction removes the player’s kinetic energy by doing an
amount of work equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the
work-energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it
to zero. The work done by friction is negative, because is in the opposite direction of the motion (that is, ,
and so ). Thus . The equation simplifies to

or

This equation can now be solved for the distance .
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Solution

Solving the previous equation for and substituting known values yields

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in
mechanical energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to
stop a mosquito.

EXAMPLE 7.10

Calculating Distance Traveled: Sliding Up an Incline
Suppose that the player from Example 7.9 is running up a hill having a incline upward with a surface similar to
that in the baseball stadium. The player slides with the same initial speed, and the frictional force is still 450 N.
Determine how far he slides.

FIGURE 7.17 The same baseball player slides to a stop on a slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he
has from his kinetic energy at zero height, to the final mechanical energy he has by moving through distance to
reach height along the hill, with . This is expressed by the equation

Solution

The work done by friction is again ; initially the potential energy is and the kinetic
energy is ; the final energy contributions are for the kinetic energy and

for the potential energy.

Substituting these values gives

Solve this for to obtain
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Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also
have been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy.
This method would have required combining the normal force and force of gravity vectors, which no longer cancel
each other because they point in different directions, and friction, to find the net force. You could then use the net
force and the net work to find the distance that reduces the kinetic energy to zero. By applying conservation of
energy and using the potential energy instead, we need only consider the gravitational potential energy ,
without combining and resolving force vectors. This simplifies the solution considerably.

7.64

Making Connections: Take-Home Investigation—Determining Friction from the
Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler,
book, and marble from Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you will
need a foam cup with a small hole in the side, as shown in Figure 7.18. From the 10-cm position on the ruler, let
the marble roll into the cup positioned at the bottom of the ruler. Measure the distance the cup moves before
stopping. What forces caused it to stop? What happened to the kinetic energy of the marble at the bottom of the
ruler? Next, place the marble at the 20-cm and the 30-cm positions and again measure the distance the cup
moves after the marble enters it. Plot the distance the cup moves versus the initial marble position on the ruler.
Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction of the cup on
the table. The force of friction on the cup is , where the normal force is just the weight of the cup plus
the marble. The normal force and force of gravity do no work because they are perpendicular to the
displacement of the cup, which moves horizontally. The work done by friction is . You will need the mass of
the marble as well to calculate its initial kinetic energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same
positions on the ruler as you did with the glass marble, is the velocity of this steel marble the same as the
velocity of the marble at the bottom of the ruler? Is the distance the cup moves proportional to the mass of the
steel and glass marbles?

FIGURE 7.18 Rolling a marble down a ruler into a foam cup.
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PHET EXPLORATIONS

The Ramp
Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to
see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and
work.

Click to view content (https://openstax.org/l/21ramp).

7.6 Conservation of Energy
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Explain the law of the conservation of energy.
• Describe some of the many forms of energy.
• Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than

being transformed, for example, into thermal energy.

Law of Conservation of Energy

Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law
of conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the
total remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This
exploration led to the definition of two major types of energy—mechanical energy and energy transferred
via work done by nonconservative forces . But energy takes many other forms, manifesting itself in many
different ways, and we need to be able to deal with all of these before we can write an equation for the above
general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( ).
Then we can state the conservation of energy in equation form as

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy
is , work done by a conservative force is represented by , work done by nonconservative forces is , and all
other energies are included as . This equation applies to all previous examples; in those situations was
constant, and so it subtracted out and was not directly considered.

When does play a role? One example occurs when a person eats. Food is oxidized with the release of carbon
dioxide, water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to
potential energy when the person changes altitude, and to thermal energy (another form of ).

7.65

Making Connections: Usefulness of the Energy Conservation Principle

The fact that energy is conserved and has many forms makes it very important. You will find that energy is
discussed in many contexts, because it is involved in all processes. It will also become apparent that many
situations are best understood in terms of energy and that problems are often most easily conceptualized and
solved by considering energy.
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