
If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fishes,
dolphins, and even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and
migratory species that fly large distances often have particular features such as long necks. Flocks of birds fly in the
shape of a spear head as the flock forms a streamlined pattern (see Figure 5.10). In humans, one important
example of streamlining is the shape of sperm, which need to be efficient in their use of energy.

FIGURE 5.10 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual
birds, and also allows them a better way to communicate. (credit: Julo, Wikimedia Commons)

5.3 Elasticity: Stress and Strain
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• State Hooke’s law.
• Explain Hooke’s law using graphical representation between deformation and applied force.
• Discuss the three types of deformations such as changes in length, sideways shear and changes in

volume.
• Describe with examples the young’s modulus, shear modulus and bulk modulus.
• Determine the change in length given mass, length and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those
that affect an object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably
change shape. A change in shape due to the application of a force is a deformation. Even very small forces are
known to cause some deformation. For small deformations, two important characteristics are observed. First, the
object returns to its original shape when the force is removed—that is, the deformation is elastic for small
deformations. Second, the size of the deformation is proportional to the force—that is, for small deformations,
Hooke’s law is obeyed. In equation form, Hooke’s law is given by

where is the amount of deformation (the change in length, for example) produced by the force , and is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.
Note that this force is a function of the deformation —it is not constant as a kinetic friction force is. Rearranging
this to

Galileo’s Experiment

Galileo is said to have dropped two objects of different masses from the Tower of Pisa. He measured how long it
took each to reach the ground. Since stopwatches weren’t readily available, how do you think he measured their
fall time? If the objects were the same size, but with different masses, what do you think he should have
observed? Would this result be different if done on the Moon?
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makes it clear that the deformation is proportional to the applied force. Figure 5.11 shows the Hooke’s law
relationship between the extension of a spring or of a human bone. For metals or springs, the straight line region
in which Hooke’s law pertains is much larger. Bones are brittle and the elastic region is small and the fracture
abrupt. Eventually a large enough stress to the material will cause it to break or fracture. Tensile strength is the
breaking stress that will cause permanent deformation or fracture of a material.

FIGURE 5.11 A graph of deformation versus applied force . The straight segment is the linear region where Hooke’s law is obeyed.
The slope of the straight region is . For larger forces, the graph is curved but the deformation is still elastic— will return to zero if the
force is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends
on several factors, including how the force is applied. Note that in this graph the slope increases just before fracture, indicating that a
small increase in is producing a large increase in near the fracture.

The proportionality constant depends upon a number of factors for the material. For example, a guitar string made
of nylon stretches when it is tightened, and the elongation is proportional to the force applied (at least for small
deformations). Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they
have a larger (see Figure 5.12). Finally, all three strings return to their normal lengths when the force is removed,
provided the deformation is small. Most materials will behave in this manner if the deformation is less than about
0.1% or about 1 part in .

FIGURE 5.12 The same force, in this case a weight ( ), applied to three different guitar strings of identical length produces the three
different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on

Hooke’s Law

where is the amount of deformation (the change in length, for example) produced by the force , and is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.
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the right is steel.

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear
(stress), and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus

A change in length is produced when a force is applied to a wire or rod parallel to its length , either stretching
it (a tension) or compressing it. (See Figure 5.13.)

FIGURE 5.13 (a) Tension. The rod is stretched a length when a force is applied parallel to its length. (b) Compression. The same rod is
compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, is
approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as
the rod is compressed or stretched.

Experiments have shown that the change in length ( ) depends on only a few variables. As already noted, is
proportional to the force and depends on the substance from which the object is made. Additionally, the change in
length is proportional to the original length and inversely proportional to the cross-sectional area of the wire or
rod. For example, a long guitar string will stretch more than a short one, and a thick string will stretch less than a
thin one. We can combine all these factors into one equation for :

where is the change in length, the applied force, is a factor, called the elastic modulus or Young’s modulus,
that depends on the substance, is the cross-sectional area, and is the original length. Table 5.3 lists values of

for several materials—those with a large are said to have a large tensile stiffness because they deform less for a
given tension or compression.

Stretch Yourself a Little

How would you go about measuring the proportionality constant of a rubber band? If a rubber band stretched
3 cm when a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were
attached to the same mass—even if put together in parallel or alternatively if tied together in series?
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Material
Young’s modulus

(tension–compression)Y
Shear modulus S Bulk modulus B

Aluminum 70 25 75

Bone – tension 16 80 8

Bone –
compression

9

Brass 90 35 75

Brick 15

Concrete 20

Glass 70 20 30

Granite 45 20 45

Hair (human) 10

Hardwood 15 10

Iron, cast 100 40 90

Lead 16 5 50

Marble 60 20 70

Nylon 5

Polystyrene 3

Silk 6

Spider thread 3

Steel 210 80 130

Tendon 1

Acetone 0.7

Ethanol 0.9

Glycerin 4.5

TABLE 5.3 Elastic Moduli1

1 Approximate and average values. Young’s moduli for tension and compression sometimes differ but are averaged here. Bone has
significantly different Young’s moduli for tension and compression.
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Material
Young’s modulus

(tension–compression)Y
Shear modulus S Bulk modulus B

Mercury 25

Water 2.2

TABLE 5.3 Elastic Moduli1

Young’s moduli are not listed for liquids and gases in Table 5.3 because they cannot be stretched or compressed in
only one direction. Note that there is an assumption that the object does not accelerate, so that there are actually
two applied forces of magnitude acting in opposite directions. For example, the strings in Figure 5.13 are being
pulled down by a force of magnitude and held up by the ceiling, which also exerts a force of magnitude .

EXAMPLE 5.3

The Stretch of a Long Cable
Suspension cables are used to carry gondolas at ski resorts. (See Figure 5.14) Consider a suspension cable that
includes an unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable
has a diameter of 5.6 cm and the maximum tension it can withstand is .

FIGURE 5.14 Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy

The force is equal to the maximum tension, or . The cross-sectional area is
. The equation can be used to find the change in length.

Solution

All quantities are known. Thus,

Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be
important in these environments.

Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways
impact or bending, resulting in the bone shearing or snapping. The behavior of bones under tension and
compression is important because it determines the load the bones can carry. Bones are classified as weight-
bearing structures such as columns in buildings and trees. Weight-bearing structures have special features; columns
in building have steel-reinforcing rods while trees and bones are fibrous. The bones in different parts of the body
serve different structural functions and are prone to different stresses. Thus the bone in the top of the femur is
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arranged in thin sheets separated by marrow while in other places the bones can be cylindrical and filled with
marrow or just solid. Overweight people have a tendency toward bone damage due to sustained compressions in
bone joints and tendons.

Another biological example of Hooke’s law occurs in tendons. Functionally, the tendon (the tissue connecting
muscle to bone) must stretch easily at first when a force is applied, but offer a much greater restoring force for a
greater strain. Figure 5.15 shows a stress-strain relationship for a human tendon. Some tendons have a high
collagen content so there is relatively little strain, or length change; others, like support tendons (as in the leg) can
change length up to 10%. Note that this stress-strain curve is nonlinear, since the slope of the line changes in
different regions. In the first part of the stretch called the toe region, the fibers in the tendon begin to align in the
direction of the stress—this is called uncrimping. In the linear region, the fibrils will be stretched, and in the failure
region individual fibers begin to break. A simple model of this relationship can be illustrated by springs in parallel:
different springs are activated at different lengths of stretch. Examples of this are given in the problems at end of
this chapter. Ligaments (tissue connecting bone to bone) behave in a similar way.

FIGURE 5.15 Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3) failure
region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very
stretchable. The elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases
and arterial walls stretch when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in
the arteries drops and the arterial walls relax to maintain the blood flow. When you feel your pulse, you are feeling
exactly this—the elastic behavior of the arteries as the blood gushes through with each pump of the heart. If the
arteries were rigid, you would not feel a pulse. The heart is also an organ with special elastic properties. The lungs
expand with muscular effort when we breathe in but relax freely and elastically when we breathe out. Our skins are
particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg with no visible sag in their
skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in elasticity starts
in the early 20s.

EXAMPLE 5.4

Calculating Deformation: How Much Does Your Leg Shorten When You Stand on It?
Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass
on it, assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

and the cross-sectional area is . The equation can be used to find the
change in length.
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Solution

All quantities except are known. Note that the compression value for Young’s modulus for bone must be used
here. Thus,

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the
rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts.
Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3 have larger values
of Young’s modulus . In other words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

The ratio of force to area, , is defined as stress (measured in ), and the ratio of the change in length to

length, , is defined as strain (a unitless quantity). In other words,

In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to
deformation. If we again rearrange this equation to the form

we see that it is the same as Hooke’s law with a proportionality constant

This general idea—that force and the deformation it causes are proportional for small deformations—applies to
changes in length, sideways bending, and changes in volume.

Sideways Stress: Shear Modulus

Figure 5.16 illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called and
it is perpendicular to , rather than parallel as with tension and compression. Shear deformation behaves similarly
to tension and compression and can be described with similar equations. The expression for shear deformation is
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Stress

The ratio of force to area, , is defined as stress measured in N/m2.

Strain

The ratio of the change in length to length, , is defined as strain (a unitless quantity). In other words,
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where is the shear modulus (see Table 5.3) and is the force applied perpendicular to and parallel to the
cross-sectional area . Again, to keep the object from accelerating, there are actually two equal and opposite forces

applied across opposite faces, as illustrated in Figure 5.16. The equation is logical—for example, it is easier to
bend a long thin pencil (small ) than a short thick one, and both are more easily bent than similar steel rods (large

).

FIGURE 5.16 Shearing forces are applied perpendicular to the length and parallel to the area , producing a deformation . Vertical
forces are not shown, but it should be kept in mind that in addition to the two shearing forces, , there must be supporting forces to keep
the object from rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of the object also is not
shown, since it is usually negligible compared with forces large enough to cause significant deformations.

Examination of the shear moduli in Table 5.3 reveals some telling patterns. For example, shear moduli are less than
Young’s moduli for most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its
Young’s modulus, but it is as large as that of steel. This is why bones are so rigid.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head
and upper part of the body. The spinal column has normal curvature for stability, but this curvature can be
increased, leading to increased shearing forces on the lower vertebrae. Discs are better at withstanding
compressional forces than shear forces. Because the spine is not vertical, the weight of the upper body exerts some
of both. Pregnant women and people that are overweight (with large abdomens) need to move their shoulders back
to maintain balance, thereby increasing the curvature in their spine and so increasing the shear component of the
stress. An increased angle due to more curvature increases the shear forces along the plane. These higher shear
forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge shaped disc below
the last vertebrae) is particularly at risk because of its location.

The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in
buildings can withstand compression, as in pillars and arches, but is very poor against shear, as might be
encountered in heavily loaded floors or during earthquakes. Modern structures were made possible by the use of
steel and steel-reinforced concrete. Almost by definition, liquids and gases have shear moduli near zero, because
they flow in response to shearing forces.

EXAMPLE 5.5

Calculating Force Required to Deform: That Nail Does Not Bend Much Under a Load
Find the mass of the picture hanging from a steel nail as shown in Figure 5.17, given that the nail bends only

. (Assume the shear modulus is known to two significant figures.)

Shear Deformation

where is the shear modulus and is the force applied perpendicular to and parallel to the cross-sectional
area .
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FIGURE 5.17 Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual) because of the
shearing effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that there are equal and opposite
forces applied across opposite cross sections of the nail. See Example 5.5 for a calculation of the mass of the picture.

Strategy

The force on the nail (neglecting the nail’s own weight) is the weight of the picture . If we can find , then the
mass of the picture is just . The equation can be solved for .

Solution

Solving the equation for , we see that all other quantities can be found:

S is found in Table 5.3 and is . The radius is 0.750 mm (as seen in the figure), so the cross-
sectional area is

The value for is also shown in the figure. Thus,

This 51 N force is the weight of the picture, so the picture’s mass is

Discussion

This is a fairly massive picture, and it is impressive that the nail flexes only —an amount undetectable to the
unaided eye.

Changes in Volume: Bulk Modulus

An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure 5.18.
It is relatively easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a
wine bottle is compressed when it is corked. But if you try corking a brim-full bottle, you cannot compress the
wine—some must be removed if the cork is to be inserted. The reason for these different compressibilities is that
atoms and molecules are separated by large empty spaces in gases but packed close together in liquids and solids.
To compress a gas, you must force its atoms and molecules closer together. To compress liquids and solids, you
must actually compress their atoms and molecules, and very strong electromagnetic forces in them oppose this
compression.
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FIGURE 5.18 An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area and its
original volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force
“applied evenly” is defined to have the same stress, or ratio of force to area on all surfaces. The deformation
produced is a change in volume , which is found to behave very similarly to the shear, tension, and compression
previously discussed. (This is not surprising, since a compression of the entire object is equivalent to compressing
each of its three dimensions.) The relationship of the change in volume to other physical quantities is given by

where is the bulk modulus (see Table 5.3), is the original volume, and is the force per unit area applied
uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of
industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms
rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process
occurs deep underground, where extremely large forces result from the weight of overlying material. Another
natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of
the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At
great depths, water is measurably compressed, as the following example illustrates.

EXAMPLE 5.6

Calculating Change in Volume with Deformation: How Much Is Water Compressed at Great
Ocean Depths?
Calculate the fractional decrease in volume ( ) for seawater at 5.00 km depth, where the force per unit area is

.

Strategy

Equation is the correct physical relationship. All quantities in the equation except are known.

Solution

Solving for the unknown gives

Substituting known values with the value for the bulk modulus from Table 5.3,
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Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about
500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from
doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a
contained material warms up, since most materials expand when their temperature increases. If the materials are
tightly constrained, they deform or break their container. Another very common example occurs when water freezes.
Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell,
or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk
deformations considered here.

PHET EXPLORATIONS

Masses & Springs
Click to view content (https://openstax.org/books/college-physics-2e/pages/5-3-elasticity-stress-and-strain)
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