
INTRODUCTION: FURTHER APPLICATIONS OF NEWTON’S LAWS

CHAPTER 5
Further Applications of Newton's Laws:
Friction, Drag, and Elasticity

5.1 Friction
5.2 Drag Forces
5.3 Elasticity: Stress and Strain

Describe the forces on the hip joint. What
means are taken to ensure that this will be a good movable joint? From the photograph (for an adult) in Figure 5.1,
estimate the dimensions of the artificial device.

It is difficult to categorize forces into various types (aside from the four basic forces discussed in previous chapter).
We know that a net force affects the motion, position, and shape of an object. It is useful at this point to look at
some particularly interesting and common forces that will provide further applications of Newton’s laws of motion.
We have in mind the forces of friction, air or liquid drag, and deformation.

Click to view content (https://openstax.org/books/college-physics-2e/pages/5-introduction-further-applications-of-
newtons-laws)

FIGURE 5.1 Total hip replacement surgery has become a common procedure. The head (or ball) of the patient’s femur fits into a cup that
has a hard plastic-like inner lining. (credit: National Institutes of Health, via Wikimedia Commons)
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5.1 Friction
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Discuss the general characteristics of friction.
• Describe the various types of friction.
• Calculate the magnitude of static and kinetic friction.

Friction is a force that is around us all the time that opposes relative motion between surfaces in contact but also
allows us to move (which you have discovered if you have ever tried to walk on ice). While a common force, the
behavior of friction is actually very complicated and is still not completely understood. We have to rely heavily on
observations for whatever understandings we can gain. However, we can still deal with its more elementary general
characteristics and understand the circumstances in which it behaves.

One of the simpler characteristics of friction is that it is parallel to the contact surface between surfaces and always
in a direction that opposes motion or attempted motion of the systems relative to each other. If two surfaces are in
contact and moving relative to one another, then the friction between them is called kinetic friction. For example,
friction slows a hockey puck sliding on ice. But when objects are stationary, static friction can act between them;
the static friction is usually greater than the kinetic friction between the surfaces.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the
crate and not move it at all. This means that the static friction responds to what you do—it increases to be equal to
and in the opposite direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and
starts to move. Once in motion it is easier to keep it in motion than it was to get it started, indicating that the kinetic
friction force is less than the static friction force. If you add mass to the crate, say by placing a box on top of it, you
need to push even harder to get it started and also to keep it moving. Furthermore, if you oiled the concrete you
would find it to be easier to get the crate started and keep it going (as you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up
inspection of these surfaces shows them to be rough. So when you push to get an object moving (in this case, a
crate), you must raise the object until it can skip along with just the tips of the surface hitting, break off the points, or
do both. A considerable force can be resisted by friction with no apparent motion. The harder the surfaces are
pushed together (such as if another box is placed on the crate), the more force is needed to move them. Part of the
friction is due to adhesive forces between the surface molecules of the two objects, which explain the dependence
of friction on the nature of the substances. Adhesion varies with substances in contact and is a complicated aspect
of surface physics. Once an object is moving, there are fewer points of contact (fewer molecules adhering), so less
force is required to keep the object moving. At small but nonzero speeds, friction is nearly independent of speed.

Friction

Friction is a force that opposes relative motion between surfaces in contact.

Kinetic Friction

If two surfaces are in contact and moving relative to one another, then the friction between them is called kinetic
friction.
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FIGURE 5.2 Frictional forces, such as , always oppose motion or attempted motion between surfaces in contact. Friction arises in part
because of the roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the
peaks can skip along the bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also
requiring a force to maintain motion. Much of the friction is actually due to attractive forces between molecules making up the two objects,
so that even perfectly smooth surfaces are not friction-free. Such adhesive forces also depend on the substances the surfaces are made of,
explaining, for example, why rubber-soled shoes slip less than those with leather soles.

The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when
there is motion (kinetic friction).

When there is no motion between the objects, the magnitude of static friction is

where is the coefficient of static friction and is the magnitude of the normal force (the force perpendicular to
the surface).

The symbol means less than or equal to, implying that static friction can have a minimum and a maximum value of
. Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to

its maximum limit. Once the applied force exceeds , the object will move. Thus

Once an object is moving, the magnitude of kinetic friction is given by

where is the coefficient of kinetic friction. A system in which is described as a system in which friction
behaves simply.

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of in
Table 5.1 are stated to only one or, at most, two digits is an indication of the approximate description of friction
given by the above two equations.

5.1

Magnitude of Static Friction

Magnitude of static friction is

where is the coefficient of static friction and is the magnitude of the normal force.

5.2

5.3

5.4

Magnitude of Kinetic Friction

The magnitude of kinetic friction is given by

where is the coefficient of kinetic friction.

5.5
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System Static friction Kinetic friction

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.04 0.02

TABLE 5.1 Coefficients of Static and Kinetic Friction

The equations given earlier include the dependence of friction on materials and the normal force. The direction of
friction is always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal
force. For example, if the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the
normal force would be equal to its weight, , perpendicular to the floor. If
the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater than

to move the crate. Once there is motion, friction is less and the coefficient
of kinetic friction might be 0.30, so that a force of only 290 N ( ) would keep it
moving at a constant speed. If the floor is lubricated, both coefficients are considerably less than they would be
without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually between 0 and 1.0. The
coefficient of the friction depends on the two surfaces that are in contact.

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the
joints, have much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the
ends of two bones, which are connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia)

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now
spray water on the table, simulating a light shower of rain. What happens now when you give the object the
same-sized tap? Now add a few drops of (vegetable or olive) oil on the surface of the water and give the same
tap. What happens now? This latter situation is particularly important for drivers to note, especially after a light
rain shower. Why?

200 5 • Further Applications of Newton's Laws: Friction, Drag, and Elasticity

Access for free at openstax.org



and the thighbone (the femur). The hip is a ball (at the end of the femur) and socket (part of the pelvis) joint. The
ends of the bones in the joint are covered by cartilage, which provides a smooth, almost glassy surface. The joints
also produce a fluid (synovial fluid) that reduces friction and wear. A damaged or arthritic joint can be replaced by an
artificial joint (Figure 5.3). These replacements can be made of metals (stainless steel or titanium) or plastic
(polyethylene), also with very small coefficients of friction.

FIGURE 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op
X-rays of the right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery
mucus found between organs in the body, allowing them to move freely past each other during heartbeats, during
breathing, and when a person moves. Artificial lubricants are also common in hospitals and doctor’s clinics. For
example, when ultrasonic imaging is carried out, the gel that couples the transducer to the skin also serves to
lubricate the surface between the transducer and the skin—thereby reducing the coefficient of friction between the
two surfaces. This allows the transducer to move freely over the skin.

EXAMPLE 5.1

Skiing Exercise
A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if
friction is known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force as
; thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a

slope. The normal force is always perpendicular to the surface, and since there is no motion perpendicular to the
surface, the normal force should equal the component of the skier’s weight perpendicular to the slope. (See the
skier and free-body diagram in Figure 5.4.)
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FIGURE 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate
system where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). (the normal force) is
perpendicular to the slope, and (the friction) is parallel to the slope, but (the skier’s weight) has components along both axes, namely

and . is equal in magnitude to , so there is no motion perpendicular to the slope. However, is less than in magnitude, so
there is acceleration down the slope (along the x-axis).

That is,

Substituting this into our expression for kinetic friction, we get

which can now be solved for the coefficient of kinetic friction .

Solution

Solving for gives

Substituting known values on the right-hand side of the equation,

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable
since values of the coefficients of friction can vary greatly. In situations like this, where an object of mass slides
down a slope that makes an angle with the horizontal, friction is given by . All objects will slide
down a slope with constant acceleration under these circumstances. Proof of this is left for this chapter’s Problems
and Exercises.

5.6

5.7

5.8

5.9

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use
this fact to measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic
friction on a slope . The component of the weight down the slope is equal to (see the
free-body diagram in Figure 5.4). These forces act in opposite directions, so when they have equal magnitude,
the acceleration is zero. Writing these out:

Solving for , we find that

5.10

5.11
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We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in
magnitude to its weight. Furthermore, simple friction is always proportional to the normal force.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale)
research. We have noted that friction is proportional to the normal force, but not to the area in contact, a somewhat
counterintuitive notion. When two rough surfaces are in contact, the actual contact area is a tiny fraction of the total
area since only high spots touch. When a greater normal force is exerted, the actual contact area increases, and it is
found that the friction is proportional to this area.

FIGURE 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal
force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how
heat is generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially,
atoms are linked with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic
lattices to vibrate—essentially creating sound waves that penetrate the material. The sound waves diminish with
distance and their energy is converted into heat. Chemical reactions that are related to frictional wear can also occur
between atoms and molecules on the surfaces. Figure 5.6 shows how the tip of a probe drawn across another
material is deformed by atomic-scale friction. The force needed to drag the tip can be measured and is found to be
related to shear stress, which will be discussed later in this chapter. The variation in shear stress is remarkable
(more than a factor of ) and difficult to predict theoretically, but shear stress is yielding a fundamental
understanding of a large-scale phenomenon known since ancient times—friction.

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap
the book lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find . Note that
the coin will not start to slide at all until an angle greater than is attained, since the coefficient of static friction
is larger than the coefficient of kinetic friction. Discuss how this may affect the value for and its uncertainty.

5.12

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides
have been made in the atomic-scale explanation of friction during the past several decades. Researchers are
finding that the atomic nature of friction seems to have several fundamental characteristics. These
characteristics not only explain some of the simpler aspects of friction—they also hold the potential for the
development of nearly friction-free environments that could save hundreds of billions of dollars in energy which
is currently being converted (unnecessarily) to heat.

5.1 • Friction 203



FIGURE 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the
force varies for different materials are yielding fundamental insights into the atomic nature of friction.

PHET EXPLORATIONS

Forces and Motion
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction
force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw
a free-body diagram of all the forces (including gravitational and normal forces).

Click to view content (https://openstax.org/books/college-physics-2e/pages/5-1-friction)

5.2 Drag Forces
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Express mathematically the drag force.
• Discuss the applications of drag force.
• Define terminal velocity.
• Determine the terminal velocity given mass.

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or
a liquid). You feel the drag force when you move your hand through water. You might also feel it if you move your
hand during a strong wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force
when you tilt your hand so only the side goes through the air—you have decreased the area of your hand that faces
the direction of motion. Like friction, the drag force always opposes the motion of an object. Unlike simple friction,
the drag force is proportional to some function of the velocity of the object in that fluid. This functionality is
complicated and depends upon the shape of the object, its size, its velocity, and the fluid it is in. For most large
objects such as bicyclists, cars, and baseballs not moving too slowly, the magnitude of the drag force is found to
be proportional to the square of the speed of the object. We can write this relationship mathematically as .
When taking into account other factors, this relationship becomes

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid. (Recall
that density is mass per unit volume.) This equation can also be written in a more generalized fashion as ,
where is a constant equivalent to . We have set the exponent for these equations as 2 because, when an
object is moving at high velocity through air, the magnitude of the drag force is proportional to the square of the

5.13
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speed. As we shall see in a few pages on fluid dynamics, for small particles moving at low speeds in a fluid, the
exponent is equal to 1.

Athletes as well as car designers seek to reduce the drag force to lower their race times. (See Figure 5.7).
“Aerodynamic” shaping of an automobile can reduce the drag force and so increase a car’s gas mileage.

FIGURE 5.7 From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are designed for speed.
They are shaped like a bullet with tapered fins. (credit: U.S. Army, via Wikimedia Commons)

The value of the drag coefficient, , is determined empirically, usually with the use of a wind tunnel. (See Figure
5.8).

FIGURE 5.8 NASA researchers test a model plane in a wind tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we will assume that it is a constant here. Table 5.2 lists some
typical drag coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At
highway speeds, over 50% of the power of a car is used to overcome air drag. The most fuel-efficient cruising speed
is about 70–80 km/h (about 45–50 mi/h). For this reason, during the 1970s oil crisis in the United States, maximum
speeds on highways were set at about 90 km/h (55 mi/h).

Drag Force

Drag force is found to be proportional to the square of the speed of the object. Mathematically

where is the drag coefficient, is the area of the object facing the fluid, and is the density of the fluid.

5.14

5.15
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Object C

Airfoil 0.05

Toyota Camry 0.28

Ford Focus 0.32

Honda Civic 0.36

Ferrari Testarossa 0.37

Dodge Ram pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90

Skydiver (horizontal) 1.0

Circular flat plate 1.12

TABLE 5.2 Drag Coefficient
Values Typical values of drag
coefficient .

Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being
redesigned as are the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full
bodysuits. Australian Cathy Freeman wore a full body suit in the 2000 Sydney Olympics, and won the gold medal for
the 400 m race. Many swimmers in the 2008 Beijing Olympics wore (Speedo) body suits; it might have made a
difference in breaking many world records (See Figure 5.9). Most elite swimmers (and cyclists) shave their body hair.
Such innovations can have the effect of slicing away milliseconds in a race, sometimes making the difference
between a gold and a silver medal. One consequence is that careful and precise guidelines must be continuously
developed to maintain the integrity of the sport.

FIGURE 5.9 Body suits, such as this LZR Racer Suit, have been credited with many world records after their release in 2008. Smoother
“skin” and more compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)
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Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces
upon a moving object. For instance, consider a skydiver falling through air under the influence of gravity. The two
forces acting on him are the force of gravity and the drag force (ignoring the buoyant force). The downward force of
gravity remains constant regardless of the velocity at which the person is moving. However, as the person’s velocity
increases, the magnitude of the drag force increases until the magnitude of the drag force is equal to the
gravitational force, thus producing a net force of zero. A zero net force means that there is no acceleration, as given
by Newton’s second law. At this point, the person’s velocity remains constant and we say that the person has
reached his terminal velocity ( ). Since is proportional to the speed, a heavier skydiver must go faster for to
equal his weight. Let’s see how this works out more quantitatively.

At the terminal velocity,

Thus,

Using the equation for drag force, we have

Solving for the velocity, we obtain

Assume the density of air is . A 75-kg skydiver descending head first will have an area
approximately and a drag coefficient of approximately . We find that

This means a skydiver with a mass of 75 kg achieves a maximum terminal velocity of about 350 km/h while traveling
in a headfirst position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may
decrease to about 200 km/h as the area increases. This terminal velocity becomes much smaller after the parachute
opens.

EXAMPLE 5.2

A Terminal Velocity
Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, . Thus the drag force on the skydiver must equal the force of gravity (the person’s

5.16

5.17

5.18

5.19

5.20

Take-Home Experiment

This interesting activity examines the effect of weight upon terminal velocity. Gather together some nested
coffee filters. Leaving them in their original shape, measure the time it takes for one, two, three, four, and five
nested filters to fall to the floor from the same height (roughly 2 m). (Note that, due to the way the filters are
nested, drag is constant and only mass varies.) They obtain terminal velocity quite quickly, so find this velocity
as a function of mass. Plot the terminal velocity versus mass. Also plot versus mass. Which of these
relationships is more linear? What can you conclude from these graphs?
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weight). Using the equation of drag force, we find .

Thus the terminal velocity can be written as

Solution

All quantities are known except the person’s projected area. This is an adult (85 kg) falling spread eagle. We can
estimate the frontal area as

Using our equation for , we find that

Discussion

This result is consistent with the value for mentioned earlier. The 75-kg skydiver going feet first had a .
He weighed less but had a smaller frontal area and so a smaller drag due to the air.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a
5-m high branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all
the time, without getting hurt. You don’t reach a terminal velocity in such a short distance, but the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J.B.S.
Haldane, titled “On Being the Right Size.”

To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a
thousand-yard mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the
ground is fairly soft. A rat is killed, a man is broken, and a horse splashes. For the resistance presented to movement
by the air is proportional to the surface of the moving object. Divide an animal’s length, breadth, and height each by
ten; its weight is reduced to a thousandth, but its surface only to a hundredth. So the resistance to falling in the case
of the small animal is relatively ten times greater than the driving force.

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very
slow, or is in a denser medium than air. Then we find that the drag force is proportional just to the velocity. This
relationship is given by Stokes’ law, which states that

where is the radius of the object, is the viscosity of the fluid, and is the object’s velocity.

Good examples of this law are provided by microorganisms, pollen, and dust particles. Because each of these
objects is so small, we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal
velocities for bacteria (size about ) can be about . To move at a greater speed, many bacteria swim using
flagella (organelles shaped like little tails) that are powered by little motors embedded in the cell. Sediment in a lake
can move at a greater terminal velocity (about ), so it can take days to reach the bottom of the lake after
being deposited on the surface.

5.21

5.22

5.23

5.24

Stokes’ Law

where is the radius of the object, is the viscosity of the fluid, and is the object’s velocity.

5.25
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If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fishes,
dolphins, and even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and
migratory species that fly large distances often have particular features such as long necks. Flocks of birds fly in the
shape of a spear head as the flock forms a streamlined pattern (see Figure 5.10). In humans, one important
example of streamlining is the shape of sperm, which need to be efficient in their use of energy.

FIGURE 5.10 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual
birds, and also allows them a better way to communicate. (credit: Julo, Wikimedia Commons)

5.3 Elasticity: Stress and Strain
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• State Hooke’s law.
• Explain Hooke’s law using graphical representation between deformation and applied force.
• Discuss the three types of deformations such as changes in length, sideways shear and changes in

volume.
• Describe with examples the young’s modulus, shear modulus and bulk modulus.
• Determine the change in length given mass, length and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those
that affect an object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably
change shape. A change in shape due to the application of a force is a deformation. Even very small forces are
known to cause some deformation. For small deformations, two important characteristics are observed. First, the
object returns to its original shape when the force is removed—that is, the deformation is elastic for small
deformations. Second, the size of the deformation is proportional to the force—that is, for small deformations,
Hooke’s law is obeyed. In equation form, Hooke’s law is given by

where is the amount of deformation (the change in length, for example) produced by the force , and is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.
Note that this force is a function of the deformation —it is not constant as a kinetic friction force is. Rearranging
this to

Galileo’s Experiment

Galileo is said to have dropped two objects of different masses from the Tower of Pisa. He measured how long it
took each to reach the ground. Since stopwatches weren’t readily available, how do you think he measured their
fall time? If the objects were the same size, but with different masses, what do you think he should have
observed? Would this result be different if done on the Moon?

5.26

5.27
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makes it clear that the deformation is proportional to the applied force. Figure 5.11 shows the Hooke’s law
relationship between the extension of a spring or of a human bone. For metals or springs, the straight line region
in which Hooke’s law pertains is much larger. Bones are brittle and the elastic region is small and the fracture
abrupt. Eventually a large enough stress to the material will cause it to break or fracture. Tensile strength is the
breaking stress that will cause permanent deformation or fracture of a material.

FIGURE 5.11 A graph of deformation versus applied force . The straight segment is the linear region where Hooke’s law is obeyed.
The slope of the straight region is . For larger forces, the graph is curved but the deformation is still elastic— will return to zero if the
force is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends
on several factors, including how the force is applied. Note that in this graph the slope increases just before fracture, indicating that a
small increase in is producing a large increase in near the fracture.

The proportionality constant depends upon a number of factors for the material. For example, a guitar string made
of nylon stretches when it is tightened, and the elongation is proportional to the force applied (at least for small
deformations). Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they
have a larger (see Figure 5.12). Finally, all three strings return to their normal lengths when the force is removed,
provided the deformation is small. Most materials will behave in this manner if the deformation is less than about
0.1% or about 1 part in .

FIGURE 5.12 The same force, in this case a weight ( ), applied to three different guitar strings of identical length produces the three
different deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on

Hooke’s Law

where is the amount of deformation (the change in length, for example) produced by the force , and is a
proportionality constant that depends on the shape and composition of the object and the direction of the force.

5.28

5.29
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the right is steel.

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear
(stress), and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus

A change in length is produced when a force is applied to a wire or rod parallel to its length , either stretching
it (a tension) or compressing it. (See Figure 5.13.)

FIGURE 5.13 (a) Tension. The rod is stretched a length when a force is applied parallel to its length. (b) Compression. The same rod is
compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, is
approximately the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as
the rod is compressed or stretched.

Experiments have shown that the change in length ( ) depends on only a few variables. As already noted, is
proportional to the force and depends on the substance from which the object is made. Additionally, the change in
length is proportional to the original length and inversely proportional to the cross-sectional area of the wire or
rod. For example, a long guitar string will stretch more than a short one, and a thick string will stretch less than a
thin one. We can combine all these factors into one equation for :

where is the change in length, the applied force, is a factor, called the elastic modulus or Young’s modulus,
that depends on the substance, is the cross-sectional area, and is the original length. Table 5.3 lists values of

for several materials—those with a large are said to have a large tensile stiffness because they deform less for a
given tension or compression.

Stretch Yourself a Little

How would you go about measuring the proportionality constant of a rubber band? If a rubber band stretched
3 cm when a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were
attached to the same mass—even if put together in parallel or alternatively if tied together in series?
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Material
Young’s modulus

(tension–compression)Y
Shear modulus S Bulk modulus B

Aluminum 70 25 75

Bone – tension 16 80 8

Bone –
compression

9

Brass 90 35 75

Brick 15

Concrete 20

Glass 70 20 30

Granite 45 20 45

Hair (human) 10

Hardwood 15 10

Iron, cast 100 40 90

Lead 16 5 50

Marble 60 20 70

Nylon 5

Polystyrene 3

Silk 6

Spider thread 3

Steel 210 80 130

Tendon 1

Acetone 0.7

Ethanol 0.9

Glycerin 4.5

TABLE 5.3 Elastic Moduli1

1 Approximate and average values. Young’s moduli for tension and compression sometimes differ but are averaged here. Bone has
significantly different Young’s moduli for tension and compression.
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Material
Young’s modulus

(tension–compression)Y
Shear modulus S Bulk modulus B

Mercury 25

Water 2.2

TABLE 5.3 Elastic Moduli1

Young’s moduli are not listed for liquids and gases in Table 5.3 because they cannot be stretched or compressed in
only one direction. Note that there is an assumption that the object does not accelerate, so that there are actually
two applied forces of magnitude acting in opposite directions. For example, the strings in Figure 5.13 are being
pulled down by a force of magnitude and held up by the ceiling, which also exerts a force of magnitude .

EXAMPLE 5.3

The Stretch of a Long Cable
Suspension cables are used to carry gondolas at ski resorts. (See Figure 5.14) Consider a suspension cable that
includes an unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable
has a diameter of 5.6 cm and the maximum tension it can withstand is .

FIGURE 5.14 Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy

The force is equal to the maximum tension, or . The cross-sectional area is
. The equation can be used to find the change in length.

Solution

All quantities are known. Thus,

Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be
important in these environments.

Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways
impact or bending, resulting in the bone shearing or snapping. The behavior of bones under tension and
compression is important because it determines the load the bones can carry. Bones are classified as weight-
bearing structures such as columns in buildings and trees. Weight-bearing structures have special features; columns
in building have steel-reinforcing rods while trees and bones are fibrous. The bones in different parts of the body
serve different structural functions and are prone to different stresses. Thus the bone in the top of the femur is
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arranged in thin sheets separated by marrow while in other places the bones can be cylindrical and filled with
marrow or just solid. Overweight people have a tendency toward bone damage due to sustained compressions in
bone joints and tendons.

Another biological example of Hooke’s law occurs in tendons. Functionally, the tendon (the tissue connecting
muscle to bone) must stretch easily at first when a force is applied, but offer a much greater restoring force for a
greater strain. Figure 5.15 shows a stress-strain relationship for a human tendon. Some tendons have a high
collagen content so there is relatively little strain, or length change; others, like support tendons (as in the leg) can
change length up to 10%. Note that this stress-strain curve is nonlinear, since the slope of the line changes in
different regions. In the first part of the stretch called the toe region, the fibers in the tendon begin to align in the
direction of the stress—this is called uncrimping. In the linear region, the fibrils will be stretched, and in the failure
region individual fibers begin to break. A simple model of this relationship can be illustrated by springs in parallel:
different springs are activated at different lengths of stretch. Examples of this are given in the problems at end of
this chapter. Ligaments (tissue connecting bone to bone) behave in a similar way.

FIGURE 5.15 Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3) failure
region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very
stretchable. The elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases
and arterial walls stretch when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in
the arteries drops and the arterial walls relax to maintain the blood flow. When you feel your pulse, you are feeling
exactly this—the elastic behavior of the arteries as the blood gushes through with each pump of the heart. If the
arteries were rigid, you would not feel a pulse. The heart is also an organ with special elastic properties. The lungs
expand with muscular effort when we breathe in but relax freely and elastically when we breathe out. Our skins are
particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg with no visible sag in their
skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in elasticity starts
in the early 20s.

EXAMPLE 5.4

Calculating Deformation: How Much Does Your Leg Shorten When You Stand on It?
Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass
on it, assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

and the cross-sectional area is . The equation can be used to find the
change in length.
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Solution

All quantities except are known. Note that the compression value for Young’s modulus for bone must be used
here. Thus,

Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the
rather large forces encountered during strenuous physical activity do not compress or bend bones by large amounts.
Although bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3 have larger values
of Young’s modulus . In other words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

The ratio of force to area, , is defined as stress (measured in ), and the ratio of the change in length to

length, , is defined as strain (a unitless quantity). In other words,

In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to
deformation. If we again rearrange this equation to the form

we see that it is the same as Hooke’s law with a proportionality constant

This general idea—that force and the deformation it causes are proportional for small deformations—applies to
changes in length, sideways bending, and changes in volume.

Sideways Stress: Shear Modulus

Figure 5.16 illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called and
it is perpendicular to , rather than parallel as with tension and compression. Shear deformation behaves similarly
to tension and compression and can be described with similar equations. The expression for shear deformation is
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Stress

The ratio of force to area, , is defined as stress measured in N/m2.

Strain

The ratio of the change in length to length, , is defined as strain (a unitless quantity). In other words,

5.38

5.39

5.3 • Elasticity: Stress and Strain 215



where is the shear modulus (see Table 5.3) and is the force applied perpendicular to and parallel to the
cross-sectional area . Again, to keep the object from accelerating, there are actually two equal and opposite forces

applied across opposite faces, as illustrated in Figure 5.16. The equation is logical—for example, it is easier to
bend a long thin pencil (small ) than a short thick one, and both are more easily bent than similar steel rods (large

).

FIGURE 5.16 Shearing forces are applied perpendicular to the length and parallel to the area , producing a deformation . Vertical
forces are not shown, but it should be kept in mind that in addition to the two shearing forces, , there must be supporting forces to keep
the object from rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of the object also is not
shown, since it is usually negligible compared with forces large enough to cause significant deformations.

Examination of the shear moduli in Table 5.3 reveals some telling patterns. For example, shear moduli are less than
Young’s moduli for most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its
Young’s modulus, but it is as large as that of steel. This is why bones are so rigid.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head
and upper part of the body. The spinal column has normal curvature for stability, but this curvature can be
increased, leading to increased shearing forces on the lower vertebrae. Discs are better at withstanding
compressional forces than shear forces. Because the spine is not vertical, the weight of the upper body exerts some
of both. Pregnant women and people that are overweight (with large abdomens) need to move their shoulders back
to maintain balance, thereby increasing the curvature in their spine and so increasing the shear component of the
stress. An increased angle due to more curvature increases the shear forces along the plane. These higher shear
forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge shaped disc below
the last vertebrae) is particularly at risk because of its location.

The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in
buildings can withstand compression, as in pillars and arches, but is very poor against shear, as might be
encountered in heavily loaded floors or during earthquakes. Modern structures were made possible by the use of
steel and steel-reinforced concrete. Almost by definition, liquids and gases have shear moduli near zero, because
they flow in response to shearing forces.

EXAMPLE 5.5

Calculating Force Required to Deform: That Nail Does Not Bend Much Under a Load
Find the mass of the picture hanging from a steel nail as shown in Figure 5.17, given that the nail bends only

. (Assume the shear modulus is known to two significant figures.)

Shear Deformation

where is the shear modulus and is the force applied perpendicular to and parallel to the cross-sectional
area .
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FIGURE 5.17 Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual) because of the
shearing effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that there are equal and opposite
forces applied across opposite cross sections of the nail. See Example 5.5 for a calculation of the mass of the picture.

Strategy

The force on the nail (neglecting the nail’s own weight) is the weight of the picture . If we can find , then the
mass of the picture is just . The equation can be solved for .

Solution

Solving the equation for , we see that all other quantities can be found:

S is found in Table 5.3 and is . The radius is 0.750 mm (as seen in the figure), so the cross-
sectional area is

The value for is also shown in the figure. Thus,

This 51 N force is the weight of the picture, so the picture’s mass is

Discussion

This is a fairly massive picture, and it is impressive that the nail flexes only —an amount undetectable to the
unaided eye.

Changes in Volume: Bulk Modulus

An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure 5.18.
It is relatively easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a
wine bottle is compressed when it is corked. But if you try corking a brim-full bottle, you cannot compress the
wine—some must be removed if the cork is to be inserted. The reason for these different compressibilities is that
atoms and molecules are separated by large empty spaces in gases but packed close together in liquids and solids.
To compress a gas, you must force its atoms and molecules closer together. To compress liquids and solids, you
must actually compress their atoms and molecules, and very strong electromagnetic forces in them oppose this
compression.
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FIGURE 5.18 An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area and its
original volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force
“applied evenly” is defined to have the same stress, or ratio of force to area on all surfaces. The deformation
produced is a change in volume , which is found to behave very similarly to the shear, tension, and compression
previously discussed. (This is not surprising, since a compression of the entire object is equivalent to compressing
each of its three dimensions.) The relationship of the change in volume to other physical quantities is given by

where is the bulk modulus (see Table 5.3), is the original volume, and is the force per unit area applied
uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of
industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms
rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process
occurs deep underground, where extremely large forces result from the weight of overlying material. Another
natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of
the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At
great depths, water is measurably compressed, as the following example illustrates.

EXAMPLE 5.6

Calculating Change in Volume with Deformation: How Much Is Water Compressed at Great
Ocean Depths?
Calculate the fractional decrease in volume ( ) for seawater at 5.00 km depth, where the force per unit area is

.

Strategy

Equation is the correct physical relationship. All quantities in the equation except are known.

Solution

Solving for the unknown gives

Substituting known values with the value for the bulk modulus from Table 5.3,
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Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about
500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from
doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a
contained material warms up, since most materials expand when their temperature increases. If the materials are
tightly constrained, they deform or break their container. Another very common example occurs when water freezes.
Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell,
or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk
deformations considered here.

PHET EXPLORATIONS

Masses & Springs
Click to view content (https://openstax.org/books/college-physics-2e/pages/5-3-elasticity-stress-and-strain)
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Glossary
deformation change in shape due to the application

of force
drag force , found to be proportional to the square

of the speed of the object; mathematically

where is the drag coefficient, is the area of the
object facing the fluid, and is the density of the
fluid

friction a force that opposes relative motion or
attempts at motion between systems in contact

Hooke’s law proportional relationship between the
force on a material and the deformation it
causes,

kinetic friction a force that opposes the motion of
two systems that are in contact and moving relative

to one another
magnitude of kinetic friction , where

is the coefficient of kinetic friction
magnitude of static friction , where is

the coefficient of static friction and is the
magnitude of the normal force

shear deformation deformation perpendicular to the
original length of an object

static friction a force that opposes the motion of two
systems that are in contact and are not moving
relative to one another

Stokes’ law , where is the radius of the
object, is the viscosity of the fluid, and is the
object’s velocity

strain ratio of change in length to original length
stress ratio of force to area
tensile strength the breaking stress that will cause

permanent deformation or fraction of a material

Section Summary
5.1 Friction

• Friction is a contact force between systems that
opposes the motion or attempted motion between
them. Simple friction is proportional to the normal
force pushing the systems together. (A normal
force is always perpendicular to the contact
surface between systems.) Friction depends on
both of the materials involved. The magnitude of
static friction between systems stationary
relative to one another is given by

where is the coefficient of static friction, which
depends on both of the materials.

• The kinetic friction force between systems
moving relative to one another is given by

where is the coefficient of kinetic friction,
which also depends on both materials.

5.2 Drag Forces

• Drag forces acting on an object moving in a fluid
oppose the motion. For larger objects (such as a
baseball) moving at a velocity in air, the drag
force is given by

where is the drag coefficient (typical values are
given in Table 5.2), is the area of the object
facing the fluid, and is the fluid density.

• For small objects (such as a bacterium) moving in
a denser medium (such as water), the drag force is

given by Stokes’ law,

where is the radius of the object, is the fluid
viscosity, and is the object’s velocity.

5.3 Elasticity: Stress and Strain

• Hooke’s law is given by

where is the amount of deformation (the
change in length), is the applied force, and is a
proportionality constant that depends on the
shape and composition of the object and the
direction of the force. The relationship between
the deformation and the applied force can also be
written as

where is Young’s modulus, which depends on
the substance, is the cross-sectional area, and

is the original length.

• The ratio of force to area, , is defined as stress,
measured in N/m2.

• The ratio of the change in length to length, , is

defined as strain (a unitless quantity). In other
words,

• The expression for shear deformation is

where is the shear modulus and is the force
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applied perpendicular to and parallel to the
cross-sectional area .

• The relationship of the change in volume to other
physical quantities is given by

where is the bulk modulus, is the original
volume, and is the force per unit area applied
uniformly inward on all surfaces.

Conceptual Questions
5.1 Friction

1. Define normal force. What is its relationship to
friction when friction behaves simply?

2. The glue on a piece of tape can exert forces. Can
these forces be a type of simple friction? Explain,
considering especially that tape can stick to vertical
walls and even to ceilings.

3. When you learn to drive, you discover that you need
to let up slightly on the brake pedal as you come to
a stop or the car will stop with a jerk. Explain this in
terms of the relationship between static and kinetic
friction.

4. When you push a piece of chalk across a
chalkboard, it sometimes screeches because it
rapidly alternates between slipping and sticking to
the board. Describe this process in more detail, in
particular explaining how it is related to the fact
that kinetic friction is less than static friction. (The
same slip-grab process occurs when tires screech
on pavement.)

5.2 Drag Forces

5. Athletes such as swimmers and bicyclists wear
body suits in competition. Formulate a list of pros
and cons of such suits.

6. Two expressions were used for the drag force
experienced by a moving object in a liquid. One
depended upon the speed, while the other was
proportional to the square of the speed. In which
types of motion would each of these expressions be
more applicable than the other one?

7. As cars travel, oil and gasoline leaks onto the road
surface. If a light rain falls, what does this do to the
control of the car? Does a heavy rain make any
difference?

8. Why can a squirrel jump from a tree branch to the
ground and run away undamaged, while a human
could break a bone in such a fall?

5.3 Elasticity: Stress and Strain

9. The elastic properties of the arteries are essential
for blood flow. Explain the importance of this in
terms of the characteristics of the flow of blood
(pulsating or continuous).

10. What are you feeling when you feel your pulse?
Measure your pulse rate for 10 s and for 1 min. Is
there a factor of 6 difference?

11. Examine different types of shoes, including sports
shoes and thongs. In terms of physics, why are the
bottom surfaces designed as they are? What
differences will dry and wet conditions make for
these surfaces?

12. Would you expect your height to be different
depending upon the time of day? Why or why not?

13. Would you expect a large or small stress to be
required to deform a spider web? Why is this
elasticity an important feature for a spider web?

14. Explain why pregnant women often suffer from
back strain late in their pregnancy.

15. An old carpenter’s trick to keep nails from bending
when they are pounded into hard materials is to
grip the center of the nail firmly with pliers. Why
does this help?

16. When a glass bottle full of vinegar warms up, both
the vinegar and the glass expand, but vinegar
expands significantly more with temperature than
glass. The bottle will break if it was filled to its
tightly capped lid. Explain why, and also explain
how a pocket of air above the vinegar would
prevent the break. (This is the function of the air
above liquids in glass containers.)

Problems & Exercises
5.1 Friction

1. A physics major is cooking breakfast when he
notices that the frictional force between his steel
spatula and his Teflon frying pan is only 0.200 N.
Knowing the coefficient of kinetic friction between
the two materials, he quickly calculates the normal
force. What is it?

2. (a) When rebuilding her car’s engine, a physics
major must exert 300 N of force to insert a dry steel
piston into a steel cylinder. What is the magnitude
of the normal force between the piston and
cylinder? (b) What is the magnitude of the force
would she have to exert if the steel parts were
oiled?
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3. (a) What is the maximum frictional force in the knee
joint of a person who supports 66.0 kg of her mass
on that knee? (b) During strenuous exercise it is
possible to exert forces to the joints that are easily
ten times greater than the weight being supported.
What is the maximum force of friction under such
conditions? The frictional forces in joints are
relatively small in all circumstances except when
the joints deteriorate, such as from injury or
arthritis. Increased frictional forces can cause
further damage and pain.

4. Suppose you have a 120-kg wooden crate resting
on a wood floor. (a) What maximum force can you
exert horizontally on the crate without moving it?
(b) If you continue to exert this force once the crate
starts to slip, what will the magnitude of its
acceleration then be?

5. (a) If half of the weight of a small
utility truck is supported by its two

drive wheels, what is the magnitude of the
maximum acceleration it can achieve on dry
concrete? (b) Will a metal cabinet lying on the
wooden bed of the truck slip if it accelerates at this
rate? (c) Solve both problems assuming the truck
has four-wheel drive.

6. A team of eight dogs pulls a sled with waxed wood
runners on wet snow (mush!). The dogs have
average masses of 19.0 kg, and the loaded sled
with its rider has a mass of 210 kg. (a) Calculate the
magnitude of the acceleration starting from rest if
each dog exerts an average force of 185 N
backward on the snow. (b) What is the magnitude of
the acceleration once the sled starts to move? (c)
For both situations, calculate the magnitude of the
force in the coupling between the dogs and the
sled.

7. Consider the 65.0-kg ice skater being pushed by
two others shown in Figure 5.19. (a) Find the
direction and magnitude of , the total force
exerted on her by the others, given that the
magnitudes and are 26.4 N and 18.6 N,
respectively. (b) What is her initial acceleration if
she is initially stationary and wearing steel-bladed
skates that point in the direction of ? (c) What is
her acceleration assuming she is already moving in
the direction of ? (Remember that friction
always acts in the direction opposite that of motion
or attempted motion between surfaces in contact.)

FIGURE 5.19

8. Show that the acceleration of any object down a
frictionless incline that makes an angle with the
horizontal is . (Note that this
acceleration is independent of mass.)

9. Show that the acceleration of any object down an
incline where friction behaves simply (that is, where

) is Note that
the acceleration is independent of mass and
reduces to the expression found in the previous
problem when friction becomes negligibly small

10. Calculate the deceleration of a snow boarder
going up a , slope assuming the coefficient of
friction for waxed wood on wet snow. The result of
Exercise 5.9 may be useful, but be careful to
consider the fact that the snow boarder is going
uphill. Explicitly show how you follow the steps in
Problem-Solving Strategies.

11. (a) Calculate the acceleration of a skier heading
down a slope, assuming the coefficient of
friction for waxed wood on wet snow. (b) Find the
angle of the slope down which this skier could
coast at a constant velocity. You can neglect air
resistance in both parts, and you will find the
result of Exercise 5.9 to be useful. Explicitly show
how you follow the steps in the Problem-Solving
Strategies.
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12. If an object is to rest on an incline without
slipping, then friction must equal the component
of the weight of the object parallel to the incline.
This requires greater and greater friction for
steeper slopes. Show that the maximum angle of
an incline above the horizontal for which an object
will not slide down is . You may use
the result of the previous problem. Assume that

and that static friction has reached its
maximum value.

13. Calculate the maximum deceleration of a car that
is heading down a slope (one that makes an
angle of with the horizontal) under the following
road conditions. You may assume that the weight
of the car is evenly distributed on all four tires and
that the coefficient of static friction is
involved—that is, the tires are not allowed to slip
during the deceleration. (Ignore rolling.) Calculate
for a car: (a) On dry concrete. (b) On wet concrete.
(c) On ice, assuming that , the same as
for shoes on ice.

14. Calculate the maximum acceleration of a car that
is heading up a slope (one that makes an angle
of with the horizontal) under the following road
conditions. Assume that only half the weight of the
car is supported by the two drive wheels and that
the coefficient of static friction is involved—that is,
the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete.
(b) On wet concrete. (c) On ice, assuming that

, the same as for shoes on ice.
15. Repeat Exercise 5.14 for a car with four-wheel

drive.
16. A freight train consists of two

engines and 45 cars with average masses of
. (a) What force must each engine

exert backward on the track to accelerate the train
at a rate of if the force of
friction is , assuming the engines
exert identical forces? This is not a large frictional
force for such a massive system. Rolling friction
for trains is small, and consequently trains are
very energy-efficient transportation systems. (b)
What is the magnitude of the force in the coupling
between the 37th and 38th cars (this is the force
each exerts on the other), assuming all cars have
the same mass and that friction is evenly
distributed among all of the cars and engines?

17. Consider the 52.0-kg mountain climber in Figure
5.20. (a) Find the tension in the rope and the force
that the mountain climber must exert with her feet
on the vertical rock face to remain stationary.
Assume that the force is exerted parallel to her
legs. Also, assume negligible force exerted by her
arms. (b) What is the minimum coefficient of
friction between her shoes and the cliff?

FIGURE 5.20 Part of the climber’s weight is supported by
her rope and part by friction between her feet and the rock
face.

18. A contestant in a winter sporting event pushes a
45.0-kg block of ice across a frozen lake as shown
in Figure 5.21(a). (a) Calculate the minimum force

he must exert to get the block moving. (b) What
is the magnitude of its acceleration once it starts
to move, if that force is maintained?
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19. Repeat Exercise 5.18 with the contestant pulling
the block of ice with a rope over his shoulder at
the same angle above the horizontal as shown in
Figure 5.21(b).

FIGURE 5.21 Which method of sliding a block of ice requires
less force—(a) pushing or (b) pulling at the same angle above
the horizontal?

5.2 Drag Forces

20. The terminal velocity of a person falling in air
depends upon the weight and the area of the
person facing the fluid. Find the terminal velocity
(in meters per second and kilometers per hour) of
an 80.0-kg skydiver falling in a headfirst position
with a cross-section area facing the fluid of

.
21. A 60-kg and a 90-kg skydiver jump from an

airplane at an altitude of 6000 m, both falling in a
headfirst position. Make some assumption on their
frontal areas and calculate their terminal
velocities. How long will it take for each skydiver
to reach the ground (assuming the time to reach
terminal velocity is small)? Assume all values are
accurate to three significant digits.

22. A 560-g squirrel with a cross-section area facing
the fluid of falls from a 5.0-m tree to the
ground. Estimate its terminal velocity. (Use a drag
coefficient for a horizontal skydiver.) What will be
the velocity of a 56-kg person hitting the ground,
assuming no drag contribution in such a short
distance?

23. To maintain a constant speed, the force provided
by a car’s engine must equal the drag force plus
the force of friction of the road (the rolling
resistance). (a) What are the magnitudes of drag
forces at 70 km/h and 100 km/h for a Toyota
Camry? (Drag area is ) (b) What is the
magnitude of drag force at 70 km/h and 100 km/h
for a Hummer H2? (Drag area is ) Assume
all values are accurate to three significant digits.

24. By what factor does the drag force on a car
increase as it goes from 65 to 110 km/h?

25. Calculate the speed a spherical rain drop would
achieve falling from 5.00 km (a) in the absence of
air drag (b) with air drag. Take the size across of
the drop to be 4 mm, the density to be

, and the cross-section area
facing the fluid to be .

26. Using Stokes’ law, verify that the units for viscosity
are kilograms per meter per second.

27. Find the terminal velocity of a spherical bacterium
(diameter ) falling in water. You will first
need to note that the drag force is equal to the
weight at terminal velocity. Take the density of the
bacterium to be .

28. Stokes’ law describes sedimentation of particles
in liquids and can be used to measure viscosity.
Particles in liquids achieve terminal velocity
quickly. One can measure the time it takes for a
particle to fall a certain distance and then use
Stokes’ law to calculate the viscosity of the liquid.
Suppose a steel ball bearing (density

, diameter ) is dropped in
a container of motor oil. It takes 12 s to fall a
distance of 0.60 m. Calculate the viscosity of the
oil.

5.3 Elasticity: Stress and Strain

29. During a circus act, one performer swings upside
down hanging from a trapeze holding another, also
upside-down, performer by the legs. If the upward
force on the lower performer is three times her
weight, how much do the bones (the femurs) in
her upper legs stretch? You may assume each is
equivalent to a uniform rod 35.0 cm long and 1.80
cm in radius. Her mass is 60.0 kg.

30. During a wrestling match, a 150 kg wrestler briefly
stands on one hand during a maneuver designed
to perplex her adversary. By how much does the
upper arm bone shorten in length? The bone can
be represented by a uniform rod 38.0 cm in length
and 2.10 cm in radius.
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31. (a) The “lead” in pencils is a graphite composition
with a Young’s modulus of about .
Calculate the change in length of the lead in an
automatic pencil if you tap it straight into the
pencil with a force of 4.0 N. The lead is 0.50 mm in
diameter and 60 mm long. (b) Is the answer
reasonable? That is, does it seem to be consistent
with what you have observed when using pencils?

32. TV broadcast antennas are the tallest artificial
structures on Earth. In 1987, a 72.0-kg physicist
placed himself and 400 kg of equipment at the top
of one 610-m high antenna to perform gravity
experiments. By how much was the antenna
compressed, if we consider it to be equivalent to a
steel cylinder 0.150 m in radius?

33. (a) By how much does a 65.0-kg mountain climber
stretch her 0.800-cm diameter nylon rope when
they hang 35.0 m below a rock outcropping? (b)
Does the answer seem to be consistent with what
you have observed for nylon ropes? Would it make
sense if the rope were actually a bungee cord?

34. A 20.0-m tall hollow aluminum flagpole is
equivalent in stiffness to a solid cylinder 4.00 cm
in diameter. A strong wind bends the pole much as
a horizontal force of 900 N exerted at the top
would. How far to the side does the top of the pole
flex?

35. As an oil well is drilled, each new section of drill
pipe supports its own weight and that of the pipe
and drill bit beneath it. Calculate the stretch in a
new 6.00 m length of steel pipe that supports
3.00 km of pipe having a mass of 20.0 kg/m and a
100-kg drill bit. The pipe is equivalent in stiffness
to a solid cylinder 5.00 cm in diameter.

36. Calculate the force a piano tuner applies to stretch
a steel piano wire 8.00 mm, if the wire is originally
0.850 mm in diameter and 1.35 m long.

37. A vertebra is subjected to a shearing force of 500
N. Find the shear deformation, taking the vertebra
to be a cylinder 3.00 cm high and 4.00 cm in
diameter.

38. A disk between vertebrae in the spine is subjected
to a shearing force of 600 N. Find its shear
deformation, taking it to have the shear modulus
of . The disk is equivalent to a solid
cylinder 0.700 cm high and 4.00 cm in diameter.

39. When using a pencil eraser, you exert a vertical
force of 6.00 N at a distance of 2.00 cm from the
hardwood-eraser joint. The pencil is 6.00 mm in
diameter and is held at an angle of to the
horizontal. (a) By how much does the wood flex
perpendicular to its length? (b) How much is it
compressed lengthwise?

40. To consider the effect of wires hung on poles, we
take data from Example 4.8, in which tensions in
wires supporting a traffic light were calculated.
The left wire made an angle below the
horizontal with the top of its pole and carried a
tension of 108 N. The 12.0 m tall hollow
aluminum pole is equivalent in stiffness to a 4.50
cm diameter solid cylinder. (a) How far is it bent to
the side? (b) By how much is it compressed?

41. A farmer making grape juice fills a glass bottle to
the brim and caps it tightly. The juice expands
more than the glass when it warms up, in such a
way that the volume increases by 0.2% (that is,

) relative to the space
available. Calculate the magnitude of the normal
force exerted by the juice per square centimeter if
its bulk modulus is , assuming the
bottle does not break. In view of your answer, do
you think the bottle will survive?

42. (a) When water freezes, its volume increases by
9.05% (that is, ). What
force per unit area is water capable of exerting on
a container when it freezes? (It is acceptable to
use the bulk modulus of water in this problem.) (b)
Is it surprising that such forces can fracture
engine blocks, boulders, and the like?

43. This problem returns to the tightrope walker
studied in Example 4.6, who created a tension of

in a wire making an angle
below the horizontal with each supporting pole.
Calculate how much this tension stretches the
steel wire if it was originally 15 m long and 0.50
cm in diameter.
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44. The pole in Figure 5.22 is at a bend in a
power line and is therefore subjected to more
shear force than poles in straight parts of the line.
The tension in each line is , at the
angles shown. The pole is 15.0 m tall, has an 18.0
cm diameter, and can be considered to have half
the stiffness of hardwood. (a) Calculate the
compression of the pole. (b) Find how much it
bends and in what direction. (c) Find the tension in
a guy wire used to keep the pole straight if it is
attached to the top of the pole at an angle of
with the vertical. (Clearly, the guy wire must be in
the opposite direction of the bend.)

FIGURE 5.22 This telephone pole is at a bend in a power
line. A guy wire is attached to the top of the pole at an angle
of with the vertical.

45. Critical Thinking Two spherical beads of the same
mass fall at a constant speed due to a drag force.
Bead A takes twice as long to fall the same
distance as bead B. (a) Which of these beads has
the larger radius? (b) Based on experimental data,
an equation that fits the data is suggested for
radius of a bead, r, which may not be correct:

, where K is a constant with
appropriate units and t is the time it takes for a
bead to reach a determined distance. Is this
equation consistent with your answer from part a?
Explain why or why not. Does this equation make
sense? Explain why or why not. (c) Beads of
different radii are selected and the time it takes to
fall a set distance is recorded. Graph the radius of
these beads as a function of the time it takes to
fall a determined distance.
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