
Discussion

It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor.
Not all of that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the
physics of the situation (which is not necessarily the same thing).

PHET EXPLORATIONS

Gravity Force Lab
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to
see how it changes the gravity force.

Click to view content (https://openstax.org/books/college-physics-2e/pages/4-4-newtons-third-law-of-motion-
symmetry-in-forces)

4.5 Normal, Tension, and Other Examples of Forces
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define normal and tension forces.
• Apply Newton's laws of motion to solve problems involving a variety of forces.
• Use trigonometric identities to resolve weight into components.

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have
been grouped into several categories and given names relating to their source, how they are transmitted, or their
effects. The most important of these categories are discussed in this section, together with some interesting
applications. Further examples of forces are discussed later in this text.

Normal Force

Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an
object from falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when
you hold it stationary, as illustrated in Figure 4.11(a). But how do inanimate objects like a table support the weight
of a mass placed on them, such as shown in Figure 4.11(b)? When the bag of dog food is placed on the table, the
table actually sags slightly under the load. This would be noticeable if the load were placed on a card table, but even
rigid objects deform when a force is applied to them. Unless the object is deformed beyond its limit, it will exert a
restoring force much like a deformed spring (or trampoline or diving board). The greater the deformation, the greater
the restoring force. So when the load is placed on the table, the table sags until the restoring force becomes as large
as the weight of the load. At this point the net external force on the load is zero. That is the situation when the load
is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is similar to the
sagging of a trampoline when you climb onto it.
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FIGURE 4.11 (a) The person holding the bag of dog food must supply an upward force equal in magnitude and opposite in direction
to the weight of the food . (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in
the table grow as it sags until they supply a force equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the
weight of the load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular
to the surface of contact between the load and its support, this force is defined to be a normal force and here is
given the symbol . (This is not the unit for force N.) The word normal means perpendicular to a surface. The normal
force can be less than the object’s weight if the object is on an incline, as you will see in the next example.

EXAMPLE 4.5

Weight on an Incline, a Two-Dimensional Problem
Consider the skier on a slope shown in Figure 4.12. Her mass including equipment is 60.0 kg. (a) What is her
acceleration if friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable . This
should not be confused with the symbol for the newton, which is also represented by the letter N. These
symbols are particularly important to distinguish because the units of a normal force ( ) happen to be newtons
(N). For example, the normal force that the floor exerts on a chair might be . One important
difference is that normal force is a vector, while the newton is simply a unit. Be careful not to confuse these
letters in your calculations! You will encounter more similarities among variables and units as you proceed in
physics. Another example of this is the quantity work ( ) and the unit watts (W).
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FIGURE 4.12 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where
one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). is perpendicular to the slope and f is parallel
to the slope, but has components along both axes, namely and . is equal in magnitude to , so that there is no motion
perpendicular to the slope, but is less than , so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The
approach we have used in two-dimensional kinematics also works very well here. Choose a convenient coordinate
system and project the vectors onto its axes, creating two connected one-dimensional problems to solve. The most
convenient coordinate system for motion on an incline is one that has one coordinate parallel to the slope and one
perpendicular to the slope. (Remember that motions along mutually perpendicular axes are independent.) We use
the symbols and to represent perpendicular and parallel, respectively. This choice of axes simplifies this type of
problem, because there is no motion perpendicular to the slope and because friction is always parallel to the
surface between two objects. The only external forces acting on the system are the skier’s weight, friction, and the
support of the slope, respectively labeled , , and in Figure 4.12. is always perpendicular to the slope, and is
parallel to it. But is not in the direction of either axis, and so the first step we take is to project it into components
along the chosen axes, defining to be the component of weight parallel to the slope and the component of
weight perpendicular to the slope. Once this is done, we can consider the two separate problems of forces parallel
to the slope and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is , and the
magnitude of the component of the weight perpendicular to the slope is .

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the
slope. (Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces
parallel to the slope are the amount of the skier’s weight parallel to the slope and friction . Using Newton’s
second law, with subscripts to denote quantities parallel to the slope,

where , assuming no friction for this part, so that

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it
opposes motion between surfaces in contact. So the net external force is now
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and substituting this into Newton’s second law, , gives

We substitute known values to obtain

which yields

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when
there is none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the
incline is , regardless of mass. This is related to the previously discussed fact that all objects fall with the
same acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless
incline with the same acceleration (if the angle is the same).

4.34
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Resolving Weight into Components

FIGURE 4.13 An object rests on an incline that makes an angle θ with the horizontal.

When an object rests on an incline that makes an angle with the horizontal, the force of gravity acting on the
object is divided into two components: a force acting perpendicular to the plane, , and a force acting parallel
to the plane, . The perpendicular force of weight, , is typically equal in magnitude and opposite in
direction to the normal force, . The force acting parallel to the plane, , causes the object to accelerate down
the incline. The force of friction, , opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline
is at an angle to the horizontal, then the magnitudes of the weight components are

and

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw
the right triangle formed by the three weight vectors. Notice that the angle of the incline is the same as the
angle formed between and . Knowing this property, you can use trigonometry to determine the magnitude
of the weight components:

4.37
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Tension

A tension is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or
cable. The word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that
carry muscle forces to other parts of the body are called tendons. Any flexible connector, such as a string, rope,
chain, wire, or cable, can exert pulls only parallel to its length; thus, a force carried by a flexible connector is a
tension with direction parallel to the connector. It is important to understand that tension is a pull in a connector. In
contrast, consider the phrase: “You can’t push a rope.” The tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in Figure 4.14.

FIGURE 4.14 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force , that force must
be parallel to the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal
force but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton’s
third law. The rope is the medium that carries the equal and opposite forces between the two objects. The tension anywhere in the rope
between the hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all
locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the
5.00-kg mass in the figure is stationary, then its acceleration is zero, and thus . The only external forces
acting on the mass are its weight and the tension supplied by the rope. Thus,

where and are the magnitudes of the tension and weight and their signs indicate direction, with up being

4.39

4.40

Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from
the end of the rubber band, and a board you can position at different angles. How much does the rubber band
stretch when you hang the object from the end of the board? Now place the board at an angle so that the object
slides off when placed on the board. How much does the rubber band extend if it is lined up parallel to the board
and used to hold the object stationary on the board? Try two more angles. What does this show?

4.41
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positive here. Thus, just as you would expect, the tension equals the weight of the supported mass:

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing
a direct observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger
joint, or a bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction
changes, and it is always parallel to the flexible connector. This is illustrated in Figure 4.15 (a) and (b).

FIGURE 4.15 (a) Tendons in the finger carry force from the muscles to other parts of the finger, usually changing the force’s direction, but
not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension from the handlebars to the
brake mechanism. Again, the direction but not the magnitude of is changed.

EXAMPLE 4.6

What Is the Tension in a Tightrope?
Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.16.

FIGURE 4.16 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at
which the tightrope walker is standing.

4.42
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Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight.
Thus, the tension on either side of the person has an upward component that can support his weight. As usual,
forces are vectors represented pictorially by arrows having the same directions as the forces and lengths
proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are
his weight and the two tensions (left tension) and (right tension), as illustrated. It is reasonable to neglect
the weight of the wire itself. The net external force is zero since the system is stationary. A little trigonometry can
now be used to find the tensions. One conclusion is possible at the outset—we can see from part (b) of the figure
that the magnitudes of the tensions and must be equal. This is because there is no horizontal acceleration in
the rope, and the only forces acting to the left and right are and . Thus, the magnitude of those forces must be
equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of
solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case the best
coordinate system has one axis horizontal and the other vertical. We call the horizontal the -axis and the vertical
the -axis.

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new
free-body diagram showing all of the horizontal and vertical components of each force acting on the system.

FIGURE 4.17 When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since
the tightrope walker is stationary. The small angle results in being much greater than .

Consider the horizontal components of the forces (denoted with a subscript ):

The net external horizontal force , since the person is stationary. Thus,

Now, observe Figure 4.17. You can use trigonometry to determine the magnitude of and . Notice that:

Equating and :

Thus,
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as predicted. Now, considering the vertical components (denoted by a subscript ), we can solve for . Again, since
the person is stationary, Newton’s second law implies that net . Thus, as illustrated in the free-body diagram
in Figure 4.17,

Observing Figure 4.17, we can use trigonometry to determine the relationship between , , and . As we
determined from the analysis in the horizontal direction, :

Now, we can substitute the values for and , into the net force equation in the vertical direction:

and

so that

and the tension is

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The
tension is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical
component of its tension is only a small fraction of the tension in the wire. The large horizontal components are in
opposite directions and cancel, and so most of the tension in the wire is not used to support the weight of the
tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as
illustrated in Figure 4.18. As we saw in the last example, the weight of the tightrope walker acted as a force
perpendicular to the rope. We saw that the tension in the roped related to the weight of the tightrope walker in the
following way:

We can extend this expression to describe the tension created when a perpendicular force ( ) is exerted at the
middle of a flexible connector:

Note that is the angle between the horizontal and the bent connector. In this case, becomes very large as
approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite
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tension would result if it were horizontal (i.e., and ). (See Figure 4.18.)

FIGURE 4.18 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull
a car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as
possible. The tension in the chain is given by ; since is small, is very large. This situation is analogous to the tightrope

walker shown in Figure 4.16, except that the tensions shown here are those transmitted to the car and the tree rather than those acting at
the point where is applied.

FIGURE 4.19 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its
own weight, giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden
Gate Bridge shown in this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the
length of flexible connectors, usually cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)

Extended Topic: Real Forces and Inertial Frames

There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas
others are not. Real forces are those that have some physical origin, such as the gravitational pull. Contrastingly,
fictitious forces are those that arise simply because an observer is in an accelerating frame of reference, such as one
that rotates (like a merry-go-round) or undergoes linear acceleration (like a car slowing down). For example, if a
satellite is heading due north above Earth’s northern hemisphere, then to an observer on Earth it will appear to
experience a force to the west that has no physical origin. Of course, what is happening here is that Earth is rotating
toward the east and moves east under the satellite. In Earth’s frame this looks like a westward force on the satellite,
or it can be interpreted as a violation of Newton’s first law (the law of inertia). An inertial frame of reference is one
in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given in this chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise
experiments to observe fictitious forces and the slight departures from Newton’s laws, such as the effect just
described. On the large scale, such as for the rotation of weather systems and ocean currents, the effects can be
easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative
to a known inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial
frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and
thrust, that are not discussed in this section. They are more specialized, and it is not necessary to discuss every type
of force. It is natural, however, to ask where the basic simplicity we seek to find in physics is in the long list of forces.
Are some more basic than others? Are some different manifestations of the same underlying force? The answer to
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both questions is yes, as will be seen in the next (extended) section and in the treatment of modern physics later in
the text.

PHET EXPLORATIONS

Forces in 1 Dimension
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction
force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View
a free-body diagram of all the forces (including gravitational and normal forces).

Click to view content (https://openstax.org/l/21forcesatwork).

4.6 Problem-Solving Strategies
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the
more immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed
here, but specific strategies useful in applying Newton’s laws of motion are emphasized. These techniques also
reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated
outright in the worked examples, and so the following techniques should reinforce skills you have already begun to
develop.

Problem-Solving Strategy for Newton’s Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s
laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of
the situation. Such a sketch is shown in Figure 4.20(a). Then, as in Figure 4.20(b), use arrows to represent all forces,
label them carefully, and make their lengths and directions correspond to the forces they represent (whenever
sufficient information exists).
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