
FIGURE 3.39 Hypothetical projectile to satellite. From this theoretical tower, a projectile is launched from a very high tower to avoid air
resistance. With increasing initial speed, the range increases and becomes longer than it would be on level ground because the Earth
curves away underneath its path. With a large enough initial speed, orbit is achieved.

PHET EXPLORATIONS

Projectile Motion
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and
mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Click to view content (https://openstax.org/books/college-physics-2e/pages/3-4-projectile-motion)

3.5 Addition of Velocities
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Apply principles of vector addition to determine relative velocity.
• Explain the significance of the observer in the measurement of velocity.

Relative Velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead
moves diagonally relative to the shore, as in Figure 3.40. The boat does not move in the direction in which it is
pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies
overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is
pointed, as illustrated in Figure 3.41. The plane is moving straight ahead relative to the air, but the movement of the
air mass relative to the ground carries it sideways.
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FIGURE 3.40 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity
(solid arrow) relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.

FIGURE 3.41 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative
to the ground in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a
velocity relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these
velocity vectors, as indicated in Figure 3.40 and Figure 3.41. These situations are only two of many in which it is
useful to add velocities. In this module, we first re-examine how to add velocities and then consider certain aspects
of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition
discussed in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical
Methods apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the
addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at

straight toward the goal and drives the ball in the same direction with a velocity of relative to her body,
then the velocity of the ball is relative to the stationary, profusely sweating goalkeeper standing in front of
the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will
concentrate on analytical techniques. The following equations give the relationships between the magnitude and
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direction of velocity ( and ) and its components ( and ) along the x- and y-axes of an appropriately chosen
coordinate system:

FIGURE 3.42 The velocity, , of an object traveling at an angle to the horizontal axis is the sum of component vectors and .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used
to find the components of a velocity when its magnitude and direction are known. The last two are used to find the
magnitude and direction of velocity when its components are known.

3.72

3.73

3.74

3.75

Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so
water starts to drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of
water. Which way do you need to push the boat so that it ends up immediately opposite? Compare the directions
of the flow of water, heading of the boat, and actual velocity of the boat.
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EXAMPLE 3.6

Adding Velocities: A Boat on a River

FIGURE 3.43 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of
1.20 m/s to the right.

Refer to Figure 3.43, which shows a boat trying to go straight across the river. Let us calculate the magnitude and
direction of the boat’s velocity relative to an observer on the shore, . The velocity of the boat, , is 0.75 m/s
in the -direction relative to the river and the velocity of the river, , is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its -axis parallel to the velocity of the river, as shown in Figure 3.43.
Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the -axis
and perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations

and directly.

Solution

The magnitude of the total velocity is

where

and

Thus,

yielding

The direction of the total velocity is given by:
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This equation gives

Discussion

Both the magnitude and the direction of the total velocity are consistent with Figure 3.43. Note that because the
velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is
evidenced by the small angle (only ) the total velocity has relative to the riverbank.

EXAMPLE 3.7

Calculating Velocity: Wind Velocity Causes an Airplane to Drift
Calculate the wind velocity for the situation shown in Figure 3.44. The plane is known to be moving at 45.0 m/s due
north relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction

west of north.

FIGURE 3.44 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of
north. What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity and that it is the
sum of two other velocities, (the wind) and (the plane relative to the air mass). The quantity is known, and
we are asked to find . None of the velocities are perpendicular, but it is possible to find their components along a
common set of perpendicular axes. If we can find the components of , then we can combine them to solve for its
magnitude and direction. As shown in Figure 3.44, we choose a coordinate system with its x-axis due east and its
y-axis due north (parallel to ). (You may wish to look back at the discussion of the addition of vectors using
perpendicular components in Vector Addition and Subtraction: Analytical Methods.)

Solution

Because is the vector sum of the and , its x- and y-components are the sums of the x- and y-components
of the wind and plane velocities. Note that the plane only has vertical component of velocity so and
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. That is,

and

We can use the first of these two equations to find :

Because and we have

The minus sign indicates motion west which is consistent with the diagram.

Now, to find we note that

Here ; thus,

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity and are known, we can find the magnitude
and direction of . First, the magnitude is

so that

The direction is:

giving

Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the
plane, as seen in Figure 3.44. Because the plane is fighting a strong combination of crosswind and head-wind, it
ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a
different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate
system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate
coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate
system with one axis parallel to gravity.

Relative Velocities and Classical Relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These
velocities are called relative velocities. For example, the velocity of an airplane relative to an air mass is different
from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its
passengers (which should be close to zero). Relative velocities are one aspect of relativity, which is defined to be
the study of how different observers moving relative to each other measure the same phenomenon.
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Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest
physicist of the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which
we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first
discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations where speeds are less
than about 1% of the speed of light—that is, less than . Most things we encounter in daily life move
slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose
a sailor at the top of a mast on a moving ship drops their binoculars. Where will it hit the deck? Will it hit at the base
of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is
negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us
consider what two different observers see when the binoculars drop. One observer is on the ship and the other on
shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall
straight down the mast. (See Figure 3.45.) To the observer on shore, the binoculars and the ship have the same
horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the
curved path shown in Figure 3.45. Although the paths look different to the different observers, each sees the same
result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to
correctly specify the velocities relative to the observer.

FIGURE 3.45 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the
binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving
forward with the ship. Both observers see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different
relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)

EXAMPLE 3.8

Calculating Relative Velocity: An Airline Passenger Drops a Coin
An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it
strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the
Earth?
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FIGURE 3.46 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the
coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of
the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial
velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In
both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m.
The final velocity can be found using the equation:

Substituting known values into the equation, we get

yielding

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know
that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial
horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to
the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal
motion, the final vertical velocity for the coin relative to the ground is , the same as found in part (a).
In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal
acceleration, the initial and final horizontal velocities are the same and . The x- and y-components of
velocity can be combined to find the magnitude of the final velocity:
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Thus,

yielding

The direction is given by:

so that

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the
Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying
horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the
ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final
velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like
ordinary numbers—the final velocity v in part (b) is not ; rather, it is . The velocity’s
magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by
different observers (one in the plane and one on the ground) in this example are analogous to those discussed for
the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that
the two observers see very different paths. (See Figure 3.46.) In addition, both observers see the coin fall 1.50 m
vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus,
one observer sees a vertical path, the other a nearly horizontal path.

PHET EXPLORATIONS

Motion in 2D
Try the "Motion in 2D" simulation to Learn about position, velocity, and acceleration vectors. Move the ball with the
mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Click to view content (https://openstax.org/l/motion-2d).
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Making Connections: Relativity and Einstein
Because Einstein was able to clearly define how measurements are made (some involve light) and because the
speed of light is the same for all observers, the outcomes are spectacularly unexpected. Time varies with
observer, energy is stored as increased mass, and more surprises await.
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