
may not be given in a problem; they can be found in tables.
4. For problems involving activity, the relationship of activity to half-life, and the number of nuclei given in the

equation can be very useful. Owing to the fact that number of nuclei is involved, you will also need

to be familiar with moles and Avogadro’s number.
5. Perform the desired calculation; keep careful track of plus and minus signs as well as powers of 10.
6. Check the answer to see if it is reasonable: Does it make sense? Compare your results with worked examples

and other information in the text. (Heeding the advice in Step 5 will also help you to be certain of your result.)
You must understand the problem conceptually to be able to determine whether the numerical result is
reasonable.

PHET EXPLORATIONS

Nuclear Fission
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear
reactor!

Click to view content (https://openstax.org/l/16fission).

31.7 Tunneling
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define and discuss tunneling.
• Define potential barrier.
• Explain quantum tunneling.

Protons and neutrons are bound inside nuclei, that means energy must be supplied to break them away. The
situation is analogous to a marble in a bowl that can roll around but lacks the energy to get over the rim. It is bound
inside the bowl (see Figure 31.26). If the marble could get over the rim, it would gain kinetic energy by rolling down
outside. However classically, if the marble does not have enough kinetic energy to get over the rim, it remains
forever trapped in its well.

FIGURE 31.26 The marble in this semicircular bowl at the top of a volcano has enough kinetic energy to get to the altitude of the dashed
line, but not enough to get over the rim, so that it is trapped forever. If it could find a tunnel through the barrier, it would escape, roll
downhill, and gain kinetic energy.

In a nucleus, the attractive nuclear potential is analogous to the bowl at the top of a volcano (where the “volcano”
refers only to the shape). Protons and neutrons have kinetic energy, but it is about 8 MeV less than that needed to
get out (see Figure 31.27). That is, they are bound by an average of 8 MeV per nucleon. The slope of the hill outside
the bowl is analogous to the repulsive Coulomb potential for a nucleus, such as for an particle outside a positive
nucleus. In decay, two protons and two neutrons spontaneously break away as a unit. Yet the protons and
neutrons do not have enough kinetic energy to get over the rim. So how does the particle get out?
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FIGURE 31.27 Nucleons within an atomic nucleus are bound or trapped by the attractive nuclear force, as shown in this simplified potential
energy curve. An particle outside the range of the nuclear force feels the repulsive Coulomb force. The particle inside the nucleus does
not have enough kinetic energy to get over the rim, yet it does manage to get out by quantum mechanical tunneling.

The answer was supplied in 1928 by the Russian physicist George Gamow (1904–1968). The particle tunnels
through a region of space it is forbidden to be in, and it comes out of the side of the nucleus. Like an electron making
a transition between orbits around an atom, it travels from one point to another without ever having been in
between. Figure 31.28 indicates how this works. The wave function of a quantum mechanical particle varies
smoothly, going from within an atomic nucleus (on one side of a potential energy barrier) to outside the nucleus (on
the other side of the potential energy barrier). Inside the barrier, the wave function does not become zero but
decreases exponentially, and we do not observe the particle inside the barrier. The probability of finding a particle is
related to the square of its wave function, and so there is a small probability of finding the particle outside the
barrier, which implies that the particle can tunnel through the barrier. This process is called barrier penetration or
quantum mechanical tunneling. This concept was developed in theory by J. Robert Oppenheimer (who led the
development of the first nuclear bombs during World War II) and was used by Gamow and others to describe
decay.

FIGURE 31.28 The wave function representing a quantum mechanical particle must vary smoothly, going from within the nucleus (to the
left of the barrier) to outside the nucleus (to the right of the barrier). Inside the barrier, the wave function does not abruptly become zero;
rather, it decreases exponentially. Outside the barrier, the wave function is small but finite, and there it smoothly becomes sinusoidal.
Owing to the fact that there is a small probability of finding the particle outside the barrier, the particle can tunnel through the barrier.

Good ideas explain more than one thing. In addition to qualitatively explaining how the four nucleons in an particle
can get out of the nucleus, the detailed theory also explains quantitatively the half-life of various nuclei that undergo

decay. This description is what Gamow and others devised, and it works for decay half-lives that vary by 17
orders of magnitude. Experiments have shown that the more energetic the decay of a particular nuclide is, the
shorter is its half-life. Tunneling explains this in the following manner: For the decay to be more energetic, the
nucleons must have more energy in the nucleus and should be able to ascend a little closer to the rim. The barrier is
therefore not as thick for more energetic decay, and the exponential decrease of the wave function inside the barrier
is not as great. Thus the probability of finding the particle outside the barrier is greater, and the half-life is shorter.

Tunneling as an effect also occurs in quantum mechanical systems other than nuclei. Electrons trapped in solids can
tunnel from one object to another if the barrier between the objects is thin enough. The process is the same in
principle as described for decay. It is far more likely for a thin barrier than a thick one. Scanning tunneling electron
microscopes function on this principle. The current of electrons that travels between a probe and a sample tunnels
through a barrier and is very sensitive to its thickness, allowing detection of individual atoms as shown in Figure
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FIGURE 31.29 (a) A scanning tunneling electron microscope can detect extremely small variations in dimensions, such as individual atoms.
Electrons tunnel quantum mechanically between the probe and the sample. The probability of tunneling is extremely sensitive to barrier
thickness, so that the electron current is a sensitive indicator of surface features. (b) Head and mouthparts of Coleoptera Chrysomelidea as
seen through an electron microscope (credit: Louisa Howard, Dartmouth College)

PHET EXPLORATIONS

Quantum Tunneling and Wave Packets
Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these
particles.

Click to view content (https://openstax.org/l/21intquatanvid).

1412 31 • Radioactivity and Nuclear Physics

Access for free at openstax.org

https://openstax.org/l/21intquatanvid

	Blank Page



