
interactions and energies, as we shall see in the next few sections. Also, it was an indication of how different nature
is from the familiar classical world on the small, quantum mechanical scale. The discovery of a substructure to all
matter in the form of atoms and molecules was now being taken a step further to reveal a substructure of atoms
that was simpler than the 92 elements then known. We have continued to search for deeper substructures, such as
those inside the nucleus, with some success. In later chapters, we will follow this quest in the discussion of quarks
and other elementary particles, and we will look at the direction the search seems now to be heading.

PHET EXPLORATIONS

Rutherford Scattering
How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous
experiment in which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off
atoms and determining that they must have a small core.

Click to view content (https://openstax.org/books/college-physics-2e/pages/30-2-discovery-of-the-parts-of-the-
atom-electrons-and-nuclei)

30.3 Bohr’s Theory of the Hydrogen Atom
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Describe the mysteries of atomic spectra.
• Explain Bohr’s theory of the hydrogen atom.
• Explain Bohr’s planetary model of the atom.
• Illustrate energy state using the energy-level diagram.
• Describe the triumphs and limits of Bohr’s theory.

The great Danish physicist Niels Bohr (1885–1962) made immediate use of Rutherford’s planetary model of the
atom. (Figure 30.13). Bohr became convinced of its validity and spent part of 1912 at Rutherford’s laboratory. In
1913, after returning to Copenhagen, he began publishing his theory of the simplest atom, hydrogen, based on the
planetary model of the atom. For decades, many questions had been asked about atomic characteristics. From their
sizes to their spectra, much was known about atoms, but little had been explained in terms of the laws of physics.
Bohr’s theory explained the atomic spectrum of hydrogen and established new and broadly applicable principles in
quantum mechanics.

FIGURE 30.13 Niels Bohr, Danish physicist, used the planetary model of the atom to explain the atomic spectrum and size of the hydrogen
atom. His many contributions to the development of atomic physics and quantum mechanics, his personal influence on many students and
colleagues, and his personal integrity, especially in the face of Nazi oppression, earned him a prominent place in history. (credit: Unknown
Author, via Wikimedia Commons)

Mysteries of Atomic Spectra

As noted in Quantization of Energy , the energies of some small systems are quantized. Atomic and molecular
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emission and absorption spectra have been known for over a century to be discrete (or quantized). (See Figure
30.14.) Maxwell and others had realized that there must be a connection between the spectrum of an atom and its
structure, something like the resonant frequencies of musical instruments. But, in spite of years of efforts by many
great minds, no one had a workable theory. (It was a running joke that any theory of atomic and molecular spectra
could be destroyed by throwing a book of data at it, so complex were the spectra.) Following Einstein’s proposal of
photons with quantized energies directly proportional to their wavelengths, it became even more evident that
electrons in atoms can exist only in discrete orbits.

FIGURE 30.14 Part (a) shows, from left to right, a discharge tube, slit, and diffraction grating producing a line spectrum. Part (b) shows the
emission line spectrum for iron. The discrete lines imply quantized energy states for the atoms that produce them. The line spectrum for
each element is unique, providing a powerful and much used analytical tool, and many line spectra were well known for many years before
they could be explained with physics. (credit for (b): Yttrium91, Wikimedia Commons)

In some cases, it had been possible to devise formulas that described the emission spectra. As you might expect,
the simplest atom—hydrogen, with its single electron—has a relatively simple spectrum. The hydrogen spectrum had
been observed in the infrared (IR), visible, and ultraviolet (UV), and several series of spectral lines had been
observed. (See Figure 30.15.) These series are named after early researchers who studied them in particular depth.

The observed hydrogen-spectrum wavelengths can be calculated using the following formula:

where is the wavelength of the emitted EM radiation and is the Rydberg constant, determined by the
experiment to be

The constant is a positive integer associated with a specific series. For the Lyman series, ; for the Balmer
series, ; for the Paschen series, ; and so on. The Lyman series is entirely in the UV, while part of the
Balmer series is visible with the remainder UV. The Paschen series and all the rest are entirely IR. There are
apparently an unlimited number of series, although they lie progressively farther into the infrared and become
difficult to observe as increases. The constant is a positive integer, but it must be greater than . Thus, for the
Balmer series, and . Note that can approach infinity. While the formula in the
wavelengths equation was just a recipe designed to fit data and was not based on physical principles, it did imply a
deeper meaning. Balmer first devised the formula for his series alone, and it was later found to describe all the other
series by using different values of . Bohr was the first to comprehend the deeper meaning. Again, we see the
interplay between experiment and theory in physics. Experimentally, the spectra were well established, an equation
was found to fit the experimental data, but the theoretical foundation was missing.
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FIGURE 30.15 A schematic of the hydrogen spectrum shows several series named for those who contributed most to their determination.
Part of the Balmer series is in the visible spectrum, while the Lyman series is entirely in the UV, and the Paschen series and others are in the
IR. Values of and are shown for some of the lines.

EXAMPLE 30.1

Calculating Wave Interference of a Hydrogen Line
What is the distance between the slits of a grating that produces a first-order maximum for the second Balmer line
at an angle of ?

Strategy and Concept

For an Integrated Concept problem, we must first identify the physical principles involved. In this example, we need
to know (a) the wavelength of light as well as (b) conditions for an interference maximum for the pattern from a
double slit. Part (a) deals with a topic of the present chapter, while part (b) considers the wave interference material
of Wave Optics.

Solution for (a)

Hydrogen spectrum wavelength. The Balmer series requires that . The first line in the series is taken to be
for , and so the second would have .

The calculation is a straightforward application of the wavelength equation. Entering the determined values for
and yields

Inverting to find gives

Discussion for (a)

This is indeed the experimentally observed wavelength, corresponding to the second (blue-green) line in the Balmer
series. More impressive is the fact that the same simple recipe predicts all of the hydrogen spectrum lines, including
new ones observed in subsequent experiments. What is nature telling us?

Solution for (b)

Double-slit interference (Wave Optics). To obtain constructive interference for a double slit, the path length
difference from two slits must be an integral multiple of the wavelength. This condition was expressed by the
equation
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where is the distance between slits and is the angle from the original direction of the beam. The number is the
order of the interference; in this example. Solving for and entering known values yields

Discussion for (b)

This number is similar to those used in the interference examples of Introduction to Quantum Physics (and is close
to the spacing between slits in commonly used diffraction glasses).

Bohr’s Solution for Hydrogen

Bohr was able to derive the formula for the hydrogen spectrum using basic physics, the planetary model of the
atom, and some very important new proposals. His first proposal is that only certain orbits are allowed: we say that
the orbits of electrons in atoms are quantized. Each orbit has a different energy, and electrons can move to a higher
orbit by absorbing energy and drop to a lower orbit by emitting energy. If the orbits are quantized, the amount of
energy absorbed or emitted is also quantized, producing discrete spectra. Photon absorption and emission are
among the primary methods of transferring energy into and out of atoms. The energies of the photons are quantized,
and their energy is explained as being equal to the change in energy of the electron when it moves from one orbit to
another. In equation form, this is

Here, is the change in energy between the initial and final orbits, and is the energy of the absorbed or
emitted photon. It is quite logical (that is, expected from our everyday experience) that energy is involved in
changing orbits. A blast of energy is required for the space shuttle, for example, to climb to a higher orbit. What is
not expected is that atomic orbits should be quantized. This is not observed for satellites or planets, which can have
any orbit given the proper energy. (See Figure 30.16.)

FIGURE 30.16 The planetary model of the atom, as modified by Bohr, has the orbits of the electrons quantized. Only certain orbits are
allowed, explaining why atomic spectra are discrete (quantized). The energy carried away from an atom by a photon comes from the
electron dropping from one allowed orbit to another and is thus quantized. This is likewise true for atomic absorption of photons.

Figure 30.17 shows an energy-level diagram, a convenient way to display energy states. In the present discussion,
we take these to be the allowed energy levels of the electron. Energy is plotted vertically with the lowest or ground
state at the bottom and with excited states above. Given the energies of the lines in an atomic spectrum, it is
possible (although sometimes very difficult) to determine the energy levels of an atom. Energy-level diagrams are
used for many systems, including molecules and nuclei. A theory of the atom or any other system must predict its
energies based on the physics of the system.
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FIGURE 30.17 An energy-level diagram plots energy vertically and is useful in visualizing the energy states of a system and the transitions
between them. This diagram is for the hydrogen-atom electrons, showing a transition between two orbits having energies and .

Bohr was clever enough to find a way to calculate the electron orbital energies in hydrogen. This was an important
first step that has been improved upon, but it is well worth repeating here, because it does correctly describe many
characteristics of hydrogen. Assuming circular orbits, Bohr proposed that the angular momentum of an electron
in its orbit is quantized, that is, it has only specific, discrete values. The value for is given by the formula

where is the angular momentum, is the electron’s mass, is the radius of the th orbit, and is Planck’s
constant. Note that angular momentum is . For a small object at a radius and , so that

. Quantization says that this value of can only be equal to , etc. At the
time, Bohr himself did not know why angular momentum should be quantized, but using this assumption he was
able to calculate the energies in the hydrogen spectrum, something no one else had done at the time.

From Bohr’s assumptions, we will now derive a number of important properties of the hydrogen atom from the
classical physics we have covered in the text. We start by noting the centripetal force causing the electron to follow
a circular path is supplied by the Coulomb force. To be more general, we note that this analysis is valid for any
single-electron atom. So, if a nucleus has protons ( for hydrogen, 2 for helium, etc.) and only one electron,
that atom is called a hydrogen-like atom. The spectra of hydrogen-like ions are similar to hydrogen, but shifted to
higher energy by the greater attractive force between the electron and nucleus. The magnitude of the centripetal
force is , while the Coulomb force is . The tacit assumption here is that the nucleus is more
massive than the stationary electron, and the electron orbits about it. This is consistent with the planetary model of
the atom. Equating these,

Angular momentum quantization is stated in an earlier equation. We solve that equation for , substitute it into the
above, and rearrange the expression to obtain the radius of the orbit. This yields:

where is defined to be the Bohr radius, since for the lowest orbit and for hydrogen , . It
is left for this chapter’s Problems and Exercises to show that the Bohr radius is
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These last two equations can be used to calculate the radii of the allowed (quantized) electron orbits in any
hydrogen-like atom. It is impressive that the formula gives the correct size of hydrogen, which is measured
experimentally to be very close to the Bohr radius. The earlier equation also tells us that the orbital radius is
proportional to , as illustrated in Figure 30.18.

FIGURE 30.18 The allowed electron orbits in hydrogen have the radii shown. These radii were first calculated by Bohr and are given by the

equation . The lowest orbit has the experimentally verified diameter of a hydrogen atom.

To get the electron orbital energies, we start by noting that the electron energy is the sum of its kinetic and potential
energy:

Kinetic energy is the familiar , assuming the electron is not moving at relativistic speeds. Potential
energy for the electron is electrical, or , where is the potential due to the nucleus, which looks like a
point charge. The nucleus has a positive charge ; thus, , recalling an earlier equation for the
potential due to a point charge. Since the electron’s charge is negative, we see that . Entering the
expressions for and , we find

Now we substitute and from earlier equations into the above expression for energy. Algebraic manipulation
yields

for the orbital energies of hydrogen-like atoms. Here, is the ground-state energy for hydrogen
and is given by

Thus, for hydrogen,
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Figure 30.19 shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for
hydrogen are related to transitions between energy levels.

FIGURE 30.19 Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are
calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without
enough kinetic energy to escape. As approaches infinity, the total energy becomes zero. This corresponds to a free
electron with no kinetic energy, since gets very large for large , and the electric potential energy thus becomes
zero. Thus, 13.6 eV is needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified
number. Given more energy, the electron becomes unbound with some kinetic energy. For example, giving 15.0 eV
to an electron in the ground state of hydrogen strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Substituting , we see that

Dividing both sides of this equation by gives an expression for :

It can be shown that
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is the Rydberg constant. Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer
years earlier as a recipe to fit experimental data.

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula
describes the hydrogen spectrum. It is because the energy levels are proportional to , where is a non-negative
integer. A downward transition releases energy, and so must be greater than . The various series are those
where the transitions end on a certain level. For the Lyman series, — that is, all the transitions end in the
ground state (see also Figure 30.19). For the Balmer series, , or all the transitions end in the first excited
state; and so on. What was once a recipe is now based in physics, and something new is emerging—angular
momentum is quantized.

Triumphs and Limits of the Bohr Theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly
calculated the size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital
energies are quantized in all atoms and molecules. Angular momentum is quantized. The electrons do not spiral into
the nucleus, as expected classically (accelerated charges radiate, so that the electron orbits classically would decay
quickly, and the electrons would sit on the nucleus—matter would collapse). These are major triumphs.

But there are limits to Bohr’s theory. It cannot be applied to multielectron atoms, even one as simple as a two-
electron helium atom. Bohr’s model is what we call semiclassical. The orbits are quantized (nonclassical) but are
assumed to be simple circular paths (classical). As quantum mechanics was developed, it became clear that there
are no well-defined orbits; rather, there are clouds of probability. Bohr’s theory also did not explain that some
spectral lines are doublets (split into two) when examined closely. We shall examine many of these aspects of
quantum mechanics in more detail, but it should be kept in mind that Bohr did not fail. Rather, he made very
important steps along the path to greater knowledge and laid the foundation for all of atomic physics that has since
evolved.

PHET EXPLORATIONS

Models of the Hydrogen Atom
How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting
light at the atom. Check how the prediction of the model matches the experimental results.

Click to view content (https://openstax.org/l/28atom_model).

30.4 X Rays: Atomic Origins and Applications
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define x-ray tube and its spectrum.
• Show the x-ray characteristic energy.
• Specify the use of x rays in medical observations.
• Explain the use of x rays in CT scanners in diagnostics.

Each type of atom (or element) has its own characteristic electromagnetic spectrum. X rays lie at the high-
frequency end of an atom’s spectrum and are characteristic of the atom as well. In this section, we explore
characteristic x rays and some of their important applications.

We have previously discussed x rays as a part of the electromagnetic spectrum in Photon Energies and the
Electromagnetic Spectrum. That module illustrated how an x-ray tube (a specialized CRT) produces x rays. Electrons
emitted from a hot filament are accelerated with a high voltage, gaining significant kinetic energy and striking the

30.33

1336 30 • Atomic Physics

Access for free at openstax.org

https://openstax.org/l/28atom_model

	Blank Page



