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The arc of a basketball, the orbit of a satellite, a bicycle
rounding a curve, a swimmer diving into a pool, blood gushing out of a wound, and a puppy chasing its tail are but a
few examples of motions along curved paths. In fact, most motions in nature follow curved paths rather than
straight lines. Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool table or a
skater on an ice rink) is two-dimensional, and thus described by two-dimensional kinematics. Motion not confined
to a plane, such as a car following a winding mountain road, is described by three-dimensional kinematics. Both
two- and three-dimensional kinematics are simple extensions of the one-dimensional kinematics developed for
straight-line motion in the previous chapter. This simple extension will allow us to apply physics to many more
situations, and it will also yield unexpected insights about nature.

Click to view content (https://openstax.org/books/college-physics-2e/pages/3-introduction-to-twodimensional-
kinematics)

FIGURE 3.1 Hitting a tennis ball is difficult enough when it is traveling at high speeds in a relatively straight line. However, most motion is in
curved, rather than straight-line, paths. Tennis players must account for the arc of the ball and the impact of its spin, while they also predict
how it will bounce and plan the location of their shot. Motion along a curved path is two- or three-dimensional motion, and can be
described in a similar fashion to one-dimensional motion. (credit: Edwin Martinez/Flickr)
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3.1 Kinematics in Two Dimensions: An Introduction
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe that motion in two dimensions consists of horizontal and vertical components.
• Understand the independence of horizontal and vertical vectors in two-dimensional motion.

FIGURE 3.2 Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they
must follow roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City

Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

FIGURE 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same
size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a
two-dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the
straight-line distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the
straight-line path form a right triangle, and so the Pythagorean theorem, , can be used to find the
straight-line distance.

FIGURE 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled and , with the hypotenuse, labeled . The
relationship is given by: . This can be rewritten, solving for : .
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The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is
, considerably shorter than the 14 blocks you walked. (Note that we are

using three significant figures in the answer. Although it appears that “9” and “5” have only one significant digit,
they are discrete numbers. In this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three
significant figures in the answer in order to show the result more precisely.)

FIGURE 3.5 The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian.
All blocks are square and the same size.

The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks)
is one example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude
and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to
the vector’s magnitude. The arrow’s length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points
in the same direction as the vector. For two-dimensional motion, the path of an object can be represented with three
vectors: one vector shows the straight-line path between the initial and final points of the motion, one vector shows
the horizontal component of the motion, and one vector shows the vertical component of the motion. The horizontal
and vertical components of the motion add together to give the straight-line path. For example, observe the three
vectors in Figure 3.5. The first represents a 9-block displacement east. The second represents a 5-block
displacement north. These vectors are added to give the third vector, with a 10.3-block total displacement. The third
vector is the straight-line path between the two points. Note that in this example, the vectors that we are adding are
perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem to
calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add
vectors that are not perpendicular. We will develop techniques for adding vectors having any direction, not just
those perpendicular to one another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and
Subtraction: Analytical Methods.)

The Independence of Perpendicular Motions

The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far
they walk east is only affected by their motion eastward. Similarly, how far they walk north is only affected by their
motion northward.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more
complicated motion involving movement in two directions at once. For example, let’s compare the motions of two
baseballs. One baseball is dropped from rest. At the same instant, another is thrown horizontally from the same
height and follows a curved path. A stroboscope has captured the positions of the balls at fixed time intervals as
they fall.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion
in the horizontal direction does not affect motion in the vertical direction, and vice versa.
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FIGURE 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent
position is an equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial
horizontal velocity, while the ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities
and positions are identical for both balls. This shows that the vertical and horizontal motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity
implies that the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air
resistance, the vertical motion of a falling object is influenced by gravity only, and not by any horizontal forces.)
Careful examination of the ball thrown horizontally shows that it travels the same horizontal distance between
flashes. This is due to the fact that there are no additional forces on the ball in the horizontal direction after it is
thrown. This result means that the horizontal velocity is constant, and affected neither by vertical motion nor by
gravity (which is vertical). Note that this case is true only for ideal conditions. In the real world, air resistance will
affect the speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional
motions (horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve (break) it
into motions along perpendicular directions. Resolving two-dimensional motion into perpendicular components is
possible because the components are independent. We shall see how to resolve vectors in Vector Addition and
Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods. We will find such
techniques to be useful in many areas of physics.

PHET EXPLORATIONS

Ladybug Motion 2D
Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or
acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback
the motion to analyze the behavior.

Click to view content (https://openstax.org/l/28ladybugmotion).

3.2 Vector Addition and Subtraction: Graphical Methods
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the rules of vector addition, subtraction, and multiplication.
• Apply graphical methods of vector addition and subtraction to determine the displacement of moving

objects.
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FIGURE 3.7 Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from
Hawai’i to Moloka’i has a number of legs, or journey segments. These segments can be added graphically with a ruler to determine the total
two-dimensional displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions

A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example,
are all vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or
minus sign. In two dimensions (2-d), however, we specify the direction of a vector relative to some reference frame
(i.e., coordinate system), using an arrow having length proportional to the vector’s magnitude and pointing in the
direction of the vector.

Figure 3.8 shows such a graphical representation of a vector, using as an example the total displacement for the
person walking in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation
that a boldface symbol, such as , stands for a vector. Its magnitude is represented by the symbol in italics, , and
its direction by .

FIGURE 3.8 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle north of east.

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force
with the vector , which has both magnitude and direction. The magnitude of the vector will be represented by a
variable in italics, such as , and the direction of the variable will be given by an angle .
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FIGURE 3.9 To describe the resultant vector for the person walking in a city considered in Figure 3.8 graphically, draw an arrow to represent
the total displacement vector . Using a protractor, draw a line at an angle relative to the east-west axis. The length of the arrow is
proportional to the vector’s magnitude and is measured along the line with a ruler. In this example, the magnitude of the vector is 10.3
units, and the direction is north of east.

Vector Addition: Head-to-Tail Method

The head-to-tail method is a graphical way to add vectors, described in Figure 3.10 below and in the steps
following. The tail of the vector is the starting point of the vector, and the head (or tip) of a vector is the final,
pointed end of the arrow.

FIGURE 3.10 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the
person walking in a city considered in Figure 3.8. (a) Draw a vector representing the displacement to the east. (b) Draw a vector
representing the displacement to the north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a
line from the tail of the east-pointing vector to the head of the north-pointing vector to form the sum or resultant vector . The length of
the arrow is proportional to the vector’s magnitude and is measured to be 10.3 units . Its direction, described as the angle with respect
to the east (or horizontal axis) is measured with a protractor to be .

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.

104 3 • Two-Dimensional Kinematics

Access for free at openstax.org



FIGURE 3.11

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector
at the head of the first vector.

FIGURE 3.12

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our
example, we have only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum,
of the other vectors.

FIGURE 3.13

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we
will use the Pythagorean theorem to determine this length.)
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Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a
protractor. (Note that in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made
and the precision of the measuring tools. It is valid for any number of vectors.

EXAMPLE 3.1

Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a Walk
Use the graphical technique for adding vectors to find the total displacement of a person who walks the following
three paths (displacements) on a flat field. First, she walks 25.0 m in a direction north of east. Then, she walks
23.0 m heading north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first , the second , and the third ,
making the lengths proportional to the distance and the directions as specified relative to an east-west line. The
head-to-tail method outlined above will give a way to determine the magnitude and direction of the resultant
displacement, denoted .

Solution

(1) Draw the three displacement vectors.

FIGURE 3.14

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

FIGURE 3.15

(3) Draw the resultant vector, .
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FIGURE 3.16

(4) Use a ruler to measure the magnitude of , and a protractor to measure the direction of . While the direction of
the vector can be specified in many ways, the easiest way is to measure the angle between the vector and the
nearest horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the
protractor upside down and measure the angle between the eastward axis and the vector.

FIGURE 3.17

In this case, the total displacement is seen to have a magnitude of 50.8 m and to lie in a direction south of
east. By using its magnitude and direction, this vector can be expressed as and south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note
that the resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in
any order as illustrated in Figure 3.18 and we will still get the same solution.

FIGURE 3.18

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is
true in every case and is an important characteristic of vectors. Vector addition is commutative. Vectors can be
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added in any order.

(This is true for the addition of ordinary numbers as well—you get the same result whether you add or ,
for example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract
from , written , we must first define what we mean by subtraction. The negative of a vector is defined to
be ; that is, graphically the negative of any vector has the same magnitude but the opposite direction, as shown in
Figure 3.19. In other words, has the same length as , but points in the opposite direction. Essentially, we just
flip the vector so it points in the opposite direction.

FIGURE 3.19 The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So is the
negative of ; it has the same length but opposite direction.

The subtraction of vector from vector is then simply defined to be the addition of to . Note that vector
subtraction is the addition of a negative vector. The order of subtraction does not affect the results.

This is analogous to the subtraction of scalars (where, for example, ). Again, the result is
independent of the order in which the subtraction is made. When vectors are subtracted graphically, the techniques
outlined above are used, as the following example illustrates.

EXAMPLE 3.2

Subtracting Vectors Graphically: A Woman Sailing a Boat
A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a
direction north of east from her current location, and then travel 30.0 m in a direction north of east (or

west of north). If the woman makes a mistake and travels in the opposite direction for the second leg of the
trip, where will she end up? Compare this location with the location of the dock.

3.1

3.2
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FIGURE 3.20

Strategy

We can represent the first leg of the trip with a vector , and the second leg of the trip with a vector . The dock is
located at a location . If the woman mistakenly travels in the opposite direction for the second leg of the
journey, she will travel a distance (30.0 m) in the direction south of east. We represent this as

, as shown below. The vector has the same magnitude as but is in the opposite direction. Thus, she will end
up at a location , or .

FIGURE 3.21

We will perform vector addition to compare the location of the dock, , with the location at which the woman
mistakenly arrives, .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors and .

(2) Place the vectors head to tail.

(3) Draw the resultant vector .

(4) Use a ruler and protractor to measure the magnitude and direction of .

FIGURE 3.22

In this case, and south of east.
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(5) To determine the location of the dock, we repeat this method to add vectors and . We obtain the resultant
vector :

FIGURE 3.23

In this case and north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction
for the second leg of the trip.

Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method
of subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we
would walk , or 82.5 m, in a direction north of east. This is an example of multiplying a vector by a
positive scalar. Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the
opposite direction. For example, if you multiply by –2, the magnitude doubles but the direction changes. We can
summarize these rules in the following way: When vector is multiplied by a scalar ,

• the magnitude of the vector becomes the absolute value of ,
• if is positive, the direction of the vector does not change,
• if is negative, the direction is reversed.

In our case, and . Vectors are multiplied by scalars in many situations. Note that division is the
inverse of multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for
multiplication of vectors by scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a Vector into Components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we
will need to do the opposite. We will need to take a single vector and find what other vectors added together
produce it. In most cases, this involves determining the perpendicular components of a single vector, for example
the x- and y-components, or the north-south and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction
north of east and want to find out how many blocks east and north had to be walked. This method is called

finding the components (or parts) of the displacement in the east and north directions, and it is the inverse of the
process followed to find the total displacement. It is one example of finding the components of a vector. There are
many applications in physics where this is a useful thing to do. We will see this soon in Projectile Motion, and much
more when we cover forces in Dynamics: Newton’s Laws of Motion. Most of these involve finding components along
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perpendicular axes (such as north and east), so that right triangles are involved. The analytical techniques
presented in Vector Addition and Subtraction: Analytical Methods are ideal for finding vector components.

PHET EXPLORATIONS

Maze Game
Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add
more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Click to view content (https://openstax.org/l/28mazegame).

3.3 Vector Addition and Subtraction: Analytical Methods
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the rules of vector addition and subtraction using analytical methods.
• Apply analytical methods to determine vertical and horizontal component vectors.
• Apply analytical methods to determine the magnitude and direction of a resultant vector.

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the
ruler and protractor of graphical methods. Part of the graphical technique is retained, because vectors are still
represented by arrows for easy visualization. However, analytical methods are more concise, accurate, and precise
than graphical methods, which are limited by the accuracy with which a drawing can be made. Analytical methods
are limited only by the accuracy and precision with which physical quantities are known.

Resolving a Vector into Perpendicular Components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along
perpendicular directions are independent. We very often need to separate a vector into perpendicular components.
For example, given a vector like in Figure 3.24, we may wish to find which two perpendicular vectors, and ,
add to produce it.

FIGURE 3.24 The vector , with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, and
. These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

and are defined to be the components of along the x- and y-axes. The three vectors , , and form a
right triangle:

Note that this relationship between vector components and the resultant vector holds only for vector quantities
(which include both magnitude and direction). The relationship does not apply for the magnitudes alone. For
example, if east, north, and north-east, then it is true that the vectors

. However, it is not true that the sum of the magnitudes of the vectors is also equal. That is,

3.3
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Thus,

If the vector is known, then its magnitude (its length) and its angle (its direction) are known. To find and
, its x- and y-components, we use the following relationships for a right triangle.

and

FIGURE 3.25 The magnitudes of the vector components and can be related to the resultant vector and the angle with
trigonometric identities. Here we see that and .

Suppose, for example, that is the vector representing the total displacement of the person walking in a city
considered in Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical
Methods.

FIGURE 3.26 We can use the relationships and to determine the magnitude of the horizontal and vertical
component vectors in this example.

Then blocks and , so that

Calculating a Resultant Vector

If the perpendicular components and of a vector are known, then can also be found analytically. To find

3.4

3.5

3.6

3.7

3.8

3.9
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the magnitude and direction of a vector from its perpendicular components and , relative to the x-axis,
we use the following relationships:

FIGURE 3.27 The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components and
have been determined.

Note that the equation is just the Pythagorean theorem relating the legs of a right triangle to the

length of the hypotenuse. For example, if and are 9 and 5 blocks, respectively, then
blocks, again consistent with the example of the person walking in a city. Finally, the direction is

, as before.

Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.28, in which the vectors and are
added to produce the resultant .

FIGURE 3.28 Vectors and are two legs of a walk, and is the resultant or total displacement. You can use analytical methods to
determine the magnitude and direction of .

If and represent two legs of a walk (two displacements), then is the total displacement. The person taking
the walk ends up at the tip of There are many ways to arrive at the same point. In particular, the person could

3.10

3.11

Determining Vectors and Vector Components with Analytical Methods

Equations and are used to find the perpendicular components of a vector—that is,

to go from and to and . Equations and are used to find a vector

from its perpendicular components—that is, to go from and to and . Both processes are crucial to
analytical methods of vector addition and subtraction.
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have walked first in the x-direction and then in the y-direction. Those paths are the x- and y-components of the

resultant, and . If we know and , we can find and using the equations and

. When you use the analytical method of vector addition, you can determine the components or
the magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be
added along the chosen perpendicular axes. Use the equations and to find the
components. In Figure 3.29, these components are , , , and . The angles that vectors and make
with the x-axis are and , respectively.

FIGURE 3.29 To add vectors and , first determine the horizontal and vertical components of each vector. These are the dotted vectors
, , and shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors
along that axis. That is, as shown in Figure 3.30,

and

FIGURE 3.30 The magnitude of the vectors and add to give the magnitude of the resultant vector in the horizontal direction.
Similarly, the magnitudes of the vectors and add to give the magnitude of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one
another like ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward
walk could be taken in two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they
are along the same direction.) So resolving vectors into components along common axes makes it easier to add
them. Now that the components of are known, its magnitude and direction can be found.

Step 3. To get the magnitude of the resultant, use the Pythagorean theorem:

3.12

3.13
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Step 4. To get the direction of the resultant relative to the x-axis:

The following example illustrates this technique for adding vectors using perpendicular components.

EXAMPLE 3.3

Adding Vectors Using Analytical Methods
Add the vector to the vector shown in Figure 3.31, using perpendicular components along the x- and y-axes.
The x- and y-axes are along the east–west and north–south directions, respectively. Vector represents the first
leg of a walk in which a person walks in a direction north of east. Vector represents the second leg, a
displacement of in a direction north of east.

FIGURE 3.31 Vector has magnitude and direction north of the x-axis. Vector has magnitude and direction
north of the x-axis. You can use analytical methods to determine the magnitude and direction of .

Strategy

The components of and along the x- and y-axes represent walking due east and due north to get to the same
ending point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of and along the x- and y-axes. Note that
, , , and . We find the x-components by using , which

gives

and

Similarly, the y-components are found using :

and

3.14

3.15

3.16

3.17

3.18

3.19
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The x- and y-components of the resultant are thus

and

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

so that

Finally, we find the direction of the resultant:

Thus,

FIGURE 3.32 Using analytical methods, we see that the magnitude of is and its direction is north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using
perpendicular components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, . Thus, the
method for the subtraction of vectors using perpendicular components is identical to that for addition. The
components of are the negatives of the components of . The x- and y-components of the resultant
are thus

and

and the rest of the method outlined above is identical to that for addition. (See Figure 3.33.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular
quantities are often independent of one another. The next module, Projectile Motion, is one of many in which using
perpendicular components helps make the picture clear and simplifies the physics.

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27
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FIGURE 3.33 The subtraction of the two vectors shown in Figure 3.28. The components of are the negatives of the components of .
The method of subtraction is the same as that for addition.

PHET EXPLORATIONS

Vector Addition
Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The
magnitude, angle, and components of each vector can be displayed in several formats.

Click to view content (https://openstax.org/books/college-physics-2e/pages/3-3-vector-addition-and-subtraction-
analytical-methods)

3.4 Projectile Motion
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum
height, and trajectory.

• Determine the location and velocity of a projectile at different points in its trajectory.
• Apply the principle of independence of motion to solve projectile motion problems.

Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of
gravity. The object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered
in Problem-Solving Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in
which there is no horizontal movement. In this section, we consider two-dimensional projectile motion, such as that
of a football or other object for which air resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can
be analyzed separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical
and horizontal motions were seen to be independent. The key to analyzing two-dimensional projectile motion is to
break it into two motions, one along the horizontal axis and the other along the vertical. (This choice of axes is the
most sensible, because acceleration due to gravity is vertical—thus, there will be no acceleration along the
horizontal axis when air resistance is negligible.) As is customary, we call the horizontal axis the x-axis and the
vertical axis the y-axis. Figure 3.34 illustrates the notation for displacement, where is defined to be the total
displacement and and are its components along the horizontal and vertical axes, respectively. The magnitudes of
these vectors are s, x, and y. (Note that in the last section we used the notation to represent a vector with
components and . If we continued this format, we would call displacement with components and .
However, to simplify the notation, we will simply represent the component vectors as and .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must
find their components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance
and friction, for example) are negligible. The components of acceleration are then very simple:

. (Note that this definition assumes that the upwards direction is defined as the positive
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direction. If you arrange the coordinate system instead such that the downwards direction is positive, then
acceleration due to gravity takes a positive value.) Because gravity is vertical, . Both accelerations are
constant, so the kinematic equations can be used.

FIGURE 3.34 The total displacement of a soccer ball at a point along its path. The vector has components and along the horizontal
and vertical axes. Its magnitude is , and it makes an angle with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are
perpendicular, so and are used. The magnitude of the components of displacement
along these axes are and The magnitudes of the components of the velocity are and

where is the magnitude of the velocity and is its direction, as shown in Figure 3.35. Initial values
are denoted with a subscript 0, as usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The
kinematic equations for horizontal and vertical motion take the following forms:

Review of Kinematic Equations (constant )
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Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only
common variable between the motions is time . The problem solving procedures here are the same as for one-
dimensional kinematics and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement and velocity . Because the x - and y -motions
are perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and

Subtraction: Analytical Methods and employing and in the following form,

where is the direction of the displacement and is the direction of the velocity :

Total displacement and velocity
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FIGURE 3.35 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the
vertical and horizontal axes. (b) The horizontal motion is simple, because and is thus constant. (c) The velocity in the vertical
direction begins to decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again,
the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y
-motions are recombined to give the total velocity at any given point on the trajectory.

EXAMPLE 3.4

A Fireworks Projectile Explodes High and Away
During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of above the
horizontal, as illustrated in Figure 3.36. The fuse is timed to ignite the shell just as it reaches its highest point above
the ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of
the shell and the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The
motion can be broken into horizontal and vertical motions in which and . We can then define and

to be zero and solve for the desired quantities.
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Solution for (a)

By “height” we mean the altitude or vertical position above the starting point. The highest point in any trajectory,
called the apex, is reached when . Since we know the initial and final velocities as well as the initial position,
we use the following equation to find :

FIGURE 3.36 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be
at a height of 233 m and 125 m away horizontally.

Because and are both zero, the equation simplifies to

Solving for gives

Now we must find , the component of the initial velocity in the y-direction. It is given by , where
is the initial velocity of 70.0 m/s, and is the initial angle. Thus,

and is

so that

Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to
gravity is negative. Note also that the maximum height depends only on the vertical component of the initial velocity,
so that any projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m
(neglecting air resistance). The numbers in this example are reasonable for large fireworks displays, the shells of
which do reach such heights before exploding. In practice, air resistance is not completely negligible, and so the
initial velocity would have to be somewhat larger than that given to reach the same height.
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Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the
easiest method is to use . Because is zero, this equation reduces to simply

Note that the final vertical velocity, , at the highest point is zero. Thus,

Discussion for (b)

This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice
several seconds pass before the shell explodes. (Another way of finding the time is by using ,
and solving the quadratic equation for .)

Solution for (c)

Because air resistance is negligible, and the horizontal velocity is constant, as discussed above. The
horizontal displacement is horizontal velocity multiplied by time as given by , where is equal to
zero:

where is the x-component of the velocity, which is given by Now,

The time for both motions is the same, and so is

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here
could be useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air
resistance has a major effect, and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for is valid for any projectile motion where
air resistance is negligible. Call the maximum height ; then,

This equation defines the maximum height of a projectile and depends only on the vertical component of the initial
velocity.
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Defining a Coordinate System

It is important to set up a coordinate system when analyzing projectile motion. One part of defining the
coordinate system is to define an origin for the and positions. Often, it is convenient to choose the initial
position of the object as the origin such that and . It is also important to define the positive and
negative directions in the and directions. Typically, we define the positive vertical direction as upwards, and
the positive horizontal direction is usually the direction of the object’s motion. When this is the case, the vertical
acceleration, , takes a negative value (since it is directed downwards towards the Earth). However, it is
occasionally useful to define the coordinates differently. For example, if you are analyzing the motion of a ball
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EXAMPLE 3.5

Calculating Projectile Motion: Hot Rock Projectile
Kilauea in Hawaii is the world’s most continuously active volcano. Very active volcanoes characteristically eject red-
hot rocks and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0
m/s and at an angle above the horizontal, as shown in Figure 3.37. The rock strikes the side of the volcano at
an altitude 20.0 m lower than its starting point. (a) Calculate the time it takes the rock to follow this path. (b) What
are the magnitude and direction of the rock’s velocity at impact?

FIGURE 3.37 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve
for the desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for

first. While the rock is rising and falling vertically, the horizontal motion continues at a constant velocity. This
example asks for the final velocity. Thus, the vertical and horizontal results will be recombined to obtain and at
the final time determined in the first part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find
the time for this by using

If we take the initial position to be zero, then the final position is Now the initial vertical velocity is
the vertical component of the initial velocity, found from = ( )( ) = .
Substituting known values yields

Rearranging terms gives a quadratic equation in :

This expression is a quadratic equation of the form , where the constants are , ,
and Its solutions are given by the quadratic formula:

This equation yields two solutions: and . (It is left as an exercise for the reader to verify these

thrown downwards from the top of a cliff, it may make sense to define the positive direction downwards since
the motion of the ball is solely in the downwards direction. If this is the case, takes a positive value.
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solutions.) The time is or . The negative value of time implies an event before the start of motion,
and so we discard it. Thus,

Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial
vertical velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities and and combine
them to find the total velocity and the angle it makes with the horizontal. Of course, is constant so we can
solve for it at any horizontal location. In this case, we chose the starting point since we know both the initial velocity
and initial angle. Therefore:

The final vertical velocity is given by the following equation:

where was found in part (a) to be . Thus,

so that

To find the magnitude of the final velocity we combine its perpendicular components, using the following
equation:

which gives

The direction is found from the equation:

so that

Thus,

Discussion for (b)

The negative angle means that the velocity is below the horizontal. This result is consistent with the fact that
the final vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m
lower than the initial altitude. (See Figure 3.37.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are
independent of each other. Galileo was the first person to fully comprehend this characteristic. He used it to predict
the range of a projectile. On level ground, we define range to be the horizontal distance traveled by a projectile.
Galileo and many others were interested in the range of projectiles primarily for military purposes—such as aiming
cannons. However, investigating the range of projectiles can shed light on other interesting phenomena, such as the
orbits of satellites around the Earth. Let us consider projectile range further.
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FIGURE 3.38 Trajectories of projectiles on level ground. (a) The greater the initial speed , the greater the range for a given initial angle.
(b) The effect of initial angle on the range of a projectile with a given initial speed. Note that the range is the same for and ,
although the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed , the greater
the range, as shown in Figure 3.38(a). The initial angle also has a dramatic effect on the range, as illustrated in
Figure 3.38(b). For a fixed initial speed, such as might be produced by a cannon, the maximum range is obtained
with . This is true only for conditions neglecting air resistance. If air resistance is considered, the maximum
angle is approximately . Interestingly, for every initial angle except , there are two angles that give the same
range—the sum of those angles is . The range also depends on the value of the acceleration of gravity . The
lunar astronaut Alan Shepherd was able to drive a golf ball a great distance on the Moon because gravity is weaker
there. The range of a projectile on level ground for which air resistance is negligible is given by

where is the initial speed and is the initial angle relative to the horizontal. The proof of this equation is left as
an end-of-chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that is very small compared with the
circumference of the Earth. If, however, the range is large, the Earth curves away below the projectile and
acceleration of gravity changes direction along the path. The range is larger than predicted by the range equation
given above because the projectile has farther to fall than it would on level ground. (See Figure 3.39.) If the initial
speed is great enough, the projectile goes into orbit. This possibility was recognized centuries before it could be
accomplished. When an object is in orbit, the Earth curves away from underneath the object at the same rate as it
falls. The object thus falls continuously but never hits the surface. These and other aspects of orbital motion, such
as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the
Earth orbits. In Addition of Velocities, we will examine the addition of velocities, which is another important aspect
of two-dimensional kinematics and will also yield insights beyond the immediate topic.

3.71
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FIGURE 3.39 Hypothetical projectile to satellite. From this theoretical tower, a projectile is launched from a very high tower to avoid air
resistance. With increasing initial speed, the range increases and becomes longer than it would be on level ground because the Earth
curves away underneath its path. With a large enough initial speed, orbit is achieved.

PHET EXPLORATIONS

Projectile Motion
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and
mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Click to view content (https://openstax.org/books/college-physics-2e/pages/3-4-projectile-motion)

3.5 Addition of Velocities
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Apply principles of vector addition to determine relative velocity.
• Explain the significance of the observer in the measurement of velocity.

Relative Velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead
moves diagonally relative to the shore, as in Figure 3.40. The boat does not move in the direction in which it is
pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies
overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is
pointed, as illustrated in Figure 3.41. The plane is moving straight ahead relative to the air, but the movement of the
air mass relative to the ground carries it sideways.
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FIGURE 3.40 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity
(solid arrow) relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.

FIGURE 3.41 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative
to the ground in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a
velocity relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these
velocity vectors, as indicated in Figure 3.40 and Figure 3.41. These situations are only two of many in which it is
useful to add velocities. In this module, we first re-examine how to add velocities and then consider certain aspects
of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition
discussed in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical
Methods apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the
addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at

straight toward the goal and drives the ball in the same direction with a velocity of relative to her body,
then the velocity of the ball is relative to the stationary, profusely sweating goalkeeper standing in front of
the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will
concentrate on analytical techniques. The following equations give the relationships between the magnitude and
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direction of velocity ( and ) and its components ( and ) along the x- and y-axes of an appropriately chosen
coordinate system:

FIGURE 3.42 The velocity, , of an object traveling at an angle to the horizontal axis is the sum of component vectors and .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used
to find the components of a velocity when its magnitude and direction are known. The last two are used to find the
magnitude and direction of velocity when its components are known.
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Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so
water starts to drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of
water. Which way do you need to push the boat so that it ends up immediately opposite? Compare the directions
of the flow of water, heading of the boat, and actual velocity of the boat.
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EXAMPLE 3.6

Adding Velocities: A Boat on a River

FIGURE 3.43 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of
1.20 m/s to the right.

Refer to Figure 3.43, which shows a boat trying to go straight across the river. Let us calculate the magnitude and
direction of the boat’s velocity relative to an observer on the shore, . The velocity of the boat, , is 0.75 m/s
in the -direction relative to the river and the velocity of the river, , is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its -axis parallel to the velocity of the river, as shown in Figure 3.43.
Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the -axis
and perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations

and directly.

Solution

The magnitude of the total velocity is

where

and

Thus,

yielding

The direction of the total velocity is given by:
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This equation gives

Discussion

Both the magnitude and the direction of the total velocity are consistent with Figure 3.43. Note that because the
velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is
evidenced by the small angle (only ) the total velocity has relative to the riverbank.

EXAMPLE 3.7

Calculating Velocity: Wind Velocity Causes an Airplane to Drift
Calculate the wind velocity for the situation shown in Figure 3.44. The plane is known to be moving at 45.0 m/s due
north relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction

west of north.

FIGURE 3.44 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of
north. What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity and that it is the
sum of two other velocities, (the wind) and (the plane relative to the air mass). The quantity is known, and
we are asked to find . None of the velocities are perpendicular, but it is possible to find their components along a
common set of perpendicular axes. If we can find the components of , then we can combine them to solve for its
magnitude and direction. As shown in Figure 3.44, we choose a coordinate system with its x-axis due east and its
y-axis due north (parallel to ). (You may wish to look back at the discussion of the addition of vectors using
perpendicular components in Vector Addition and Subtraction: Analytical Methods.)

Solution

Because is the vector sum of the and , its x- and y-components are the sums of the x- and y-components
of the wind and plane velocities. Note that the plane only has vertical component of velocity so and
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. That is,

and

We can use the first of these two equations to find :

Because and we have

The minus sign indicates motion west which is consistent with the diagram.

Now, to find we note that

Here ; thus,

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity and are known, we can find the magnitude
and direction of . First, the magnitude is

so that

The direction is:

giving

Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the
plane, as seen in Figure 3.44. Because the plane is fighting a strong combination of crosswind and head-wind, it
ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a
different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate
system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate
coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate
system with one axis parallel to gravity.

Relative Velocities and Classical Relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These
velocities are called relative velocities. For example, the velocity of an airplane relative to an air mass is different
from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its
passengers (which should be close to zero). Relative velocities are one aspect of relativity, which is defined to be
the study of how different observers moving relative to each other measure the same phenomenon.
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Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest
physicist of the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which
we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first
discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations where speeds are less
than about 1% of the speed of light—that is, less than . Most things we encounter in daily life move
slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose
a sailor at the top of a mast on a moving ship drops their binoculars. Where will it hit the deck? Will it hit at the base
of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is
negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us
consider what two different observers see when the binoculars drop. One observer is on the ship and the other on
shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall
straight down the mast. (See Figure 3.45.) To the observer on shore, the binoculars and the ship have the same
horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the
curved path shown in Figure 3.45. Although the paths look different to the different observers, each sees the same
result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to
correctly specify the velocities relative to the observer.

FIGURE 3.45 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the
binoculars dropped from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving
forward with the ship. Both observers see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different
relative to the two observers. (The ship is shown moving rather fast to emphasize the effect.)

EXAMPLE 3.8

Calculating Relative Velocity: An Airline Passenger Drops a Coin
An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it
strikes the floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the
Earth?

132 3 • Two-Dimensional Kinematics

Access for free at openstax.org



FIGURE 3.46 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the
coin fall straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of
the coin is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial
velocity is 260 m/s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In
both parts, it is best to use a coordinate system with vertical and horizontal axes.

Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m.
The final velocity can be found using the equation:

Substituting known values into the equation, we get

yielding

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know
that the velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial
horizontal velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to
the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal
motion, the final vertical velocity for the coin relative to the ground is , the same as found in part (a).
In contrast to part (a), there now is a horizontal component of the velocity. However, since there is no horizontal
acceleration, the initial and final horizontal velocities are the same and . The x- and y-components of
velocity can be combined to find the magnitude of the final velocity:

3.93

3.94

3.95

3.5 • Addition of Velocities 133



Thus,

yielding

The direction is given by:

so that

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the
Earth and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying
horizontally as when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the
ground sees a much different motion for the coin. The plane is moving so fast horizontally to begin with that its final
velocity is barely greater than the initial velocity. Once again, we see that in two dimensions, vectors do not add like
ordinary numbers—the final velocity v in part (b) is not ; rather, it is . The velocity’s
magnitude had to be calculated to five digits to see any difference from that of the airplane. The motions as seen by
different observers (one in the plane and one on the ground) in this example are analogous to those discussed for
the binoculars dropped from the mast of a moving ship, except that the velocity of the plane is much larger, so that
the two observers see very different paths. (See Figure 3.46.) In addition, both observers see the coin fall 1.50 m
vertically, but the one on the ground also sees it move forward 144 m (this calculation is left for the reader). Thus,
one observer sees a vertical path, the other a nearly horizontal path.

PHET EXPLORATIONS

Motion in 2D
Try the "Motion in 2D" simulation to Learn about position, velocity, and acceleration vectors. Move the ball with the
mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Click to view content (https://openstax.org/l/motion-2d).
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Making Connections: Relativity and Einstein
Because Einstein was able to clearly define how measurements are made (some involve light) and because the
speed of light is the same for all observers, the outcomes are spectacularly unexpected. Time varies with
observer, energy is stored as increased mass, and more surprises await.
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Glossary
air resistance a frictional force that slows the motion

of objects as they travel through the air; when
solving basic physics problems, air resistance is
assumed to be zero

analytical method the method of determining the
magnitude and direction of a resultant vector using
the Pythagorean theorem and trigonometric
identities

classical relativity the study of relative velocities in
situations where speeds are less than about 1% of
the speed of light—that is, less than 3000 km/s

commutative refers to the interchangeability of order
in a function; vector addition is commutative
because the order in which vectors are added
together does not affect the final sum

component (of a 2-d vector) a piece of a vector that
points in either the vertical or the horizontal
direction; every 2-d vector can be expressed as a
sum of two vertical and horizontal vector
components

direction (of a vector) the orientation of a vector in
space

head (of a vector) the end point of a vector; the
location of the tip of the vector’s arrowhead; also
referred to as the “tip”

head-to-tail method a method of adding vectors in
which the tail of each vector is placed at the head of
the previous vector

kinematics the study of motion without regard to

mass or force
magnitude (of a vector) the length or size of a vector;

magnitude is a scalar quantity
motion displacement of an object as a function of

time
projectile an object that travels through the air and

experiences only acceleration due to gravity
projectile motion the motion of an object that is

subject only to the acceleration of gravity
range the maximum horizontal distance that a

projectile travels
relative velocity the velocity of an object as observed

from a particular reference frame
relativity the study of how different observers

moving relative to each other measure the same
phenomenon

resultant the sum of two or more vectors
resultant vector the vector sum of two or more

vectors
scalar a quantity with magnitude but no direction
tail the start point of a vector; opposite to the head or

tip of the arrow
trajectory the path of a projectile through the air
vector a quantity that has both magnitude and

direction; an arrow used to represent quantities
with both magnitude and direction

vector addition the rules that apply to adding vectors
together

velocity speed in a given direction

Section Summary
3.1 Kinematics in Two Dimensions: An
Introduction

• The shortest path between any two points is a
straight line. In two dimensions, this path can be
represented by a vector with horizontal and
vertical components.

• The horizontal and vertical components of a vector
are independent of one another. Motion in the
horizontal direction does not affect motion in the
vertical direction, and vice versa.

3.2 Vector Addition and Subtraction:
Graphical Methods

• The graphical method of adding vectors and
involves drawing vectors on a graph and adding
them using the head-to-tail method. The resultant
vector is defined such that . The
magnitude and direction of are then determined
with a ruler and protractor, respectively.

• The graphical method of subtracting vector

from involves adding the opposite of vector ,
which is defined as . In this case,

. Then, the head-to-tail
method of addition is followed in the usual way to
obtain the resultant vector .

• Addition of vectors is commutative such that
.

• The head-to-tail method of adding vectors
involves drawing the first vector on a graph and
then placing the tail of each subsequent vector at
the head of the previous vector. The resultant
vector is then drawn from the tail of the first vector
to the head of the final vector.

• If a vector is multiplied by a scalar quantity ,
the magnitude of the product is given by . If is
positive, the direction of the product points in the
same direction as ; if is negative, the direction
of the product points in the opposite direction as

.
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3.3 Vector Addition and Subtraction:
Analytical Methods

• The analytical method of vector addition and
subtraction involves using the Pythagorean
theorem and trigonometric identities to determine
the magnitude and direction of a resultant vector.

• The steps to add vectors and using the
analytical method are as follows:
Step 1: Determine the coordinate system for the
vectors. Then, determine the horizontal and
vertical components of each vector using the
equations

and

Step 2: Add the horizontal and vertical
components of each vector to determine the
components and of the resultant vector, :

and

Step 3: Use the Pythagorean theorem to determine
the magnitude, , of the resultant vector :

Step 4: Use a trigonometric identity to determine
the direction, , of :

3.4 Projectile Motion

• Projectile motion is the motion of an object
through the air that is subject only to the
acceleration of gravity.

• To solve projectile motion problems, perform the
following steps:

1. Determine a coordinate system. Then, resolve
the position and/or velocity of the object in the
horizontal and vertical components. The
components of position are given by the
quantities and , and the components of the
velocity are given by and

, where is the magnitude of the
velocity and is its direction.

2. Analyze the motion of the projectile in the
horizontal direction using the following
equations:

3. Analyze the motion of the projectile in the
vertical direction using the following equations:

4. Recombine the horizontal and vertical
components of location and/or velocity using
the following equations:

• The maximum height of a projectile launched
with initial vertical velocity is given by

• The maximum horizontal distance traveled by a
projectile is called the range. The range of a
projectile on level ground launched at an angle
above the horizontal with initial speed is given
by

3.5 Addition of Velocities

• Velocities in two dimensions are added using the
same analytical vector techniques, which are
rewritten as

• Relative velocity is the velocity of an object as
observed from a particular reference frame, and it
varies dramatically with reference frame.

• Relativity is the study of how different observers
measure the same phenomenon, particularly when
the observers move relative to one another.
Classical relativity is limited to situations where
speed is less than about 1% of the speed of light
(3000 km/s).

136 3 • Section Summary

Access for free at openstax.org



Conceptual Questions
3.2 Vector Addition and Subtraction:
Graphical Methods

1. Which of the following is a vector: a person’s height,
the altitude on Mt. Everest, the age of the Earth, the
boiling point of water, the cost of this book, the
Earth’s population, the acceleration of gravity?

2. Give a specific example of a vector, stating its
magnitude, units, and direction.

3. What do vectors and scalars have in common? How
do they differ?

4. Two campers in a national park hike from their
cabin to the same spot on a lake, each taking a
different path, as illustrated below. The total
distance traveled along Path 1 is 7.5 km, and that
along Path 2 is 8.2 km. What is the final
displacement of each camper?

FIGURE 3.47

5. If an airplane pilot is told to fly 123 km in a straight
line to get from San Francisco to Sacramento,
explain why he could end up anywhere on the circle
shown in Figure 3.48. What other information would
he need to get to Sacramento?

FIGURE 3.48

6. Suppose you take two steps and (that is, two
nonzero displacements). Under what circumstances
can you end up at your starting point? More
generally, under what circumstances can two
nonzero vectors add to give zero? Is the maximum
distance you can end up from the starting point

the sum of the lengths of the two steps?
7. Explain why it is not possible to add a scalar to a

vector.
8. If you take two steps of different sizes, can you end

up at your starting point? More generally, can two
vectors with different magnitudes ever add to zero?
Can three or more?

3.3 Vector Addition and Subtraction:
Analytical Methods

9. Suppose you add two vectors and . What
relative direction between them produces the
resultant with the greatest magnitude? What is the
maximum magnitude? What relative direction
between them produces the resultant with the
smallest magnitude? What is the minimum
magnitude?

10. Give an example of a nonzero vector that has a
component of zero.
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11. Explain why a vector cannot have a component
greater than its own magnitude.

12. If the vectors and are perpendicular, what is
the component of along the direction of ?
What is the component of along the direction of

?

3.4 Projectile Motion

13. Answer the following questions for projectile
motion on level ground assuming negligible air
resistance (the initial angle being neither nor

): (a) Is the velocity ever zero? (b) When is the
velocity a minimum? A maximum? (c) Can the
velocity ever be the same as the initial velocity at a
time other than at ? (d) Can the speed ever
be the same as the initial speed at a time other
than at ?

14. Answer the following questions for projectile
motion on level ground assuming negligible air
resistance (the initial angle being neither nor

): (a) Is the acceleration ever zero? (b) Is the
acceleration ever in the same direction as a
component of velocity? (c) Is the acceleration ever
opposite in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is
determined by the angle at which it is fired. For all
but the maximum, there are two angles that give
the same range. Considering factors that might
affect the ability of an archer to hit a target, such
as wind, explain why the smaller angle (closer to
the horizontal) is preferable. When would it be
necessary for the archer to use the larger angle?
Why does the punter in a football game use the
higher trajectory?

16. During a lecture demonstration, a professor places
two coins on the edge of a table. She then flicks
one of the coins horizontally off the table,
simultaneously nudging the other over the edge.
Describe the subsequent motion of the two coins,
in particular discussing whether they hit the floor
at the same time.

3.5 Addition of Velocities

17. What frame or frames of reference do you
instinctively use when driving a car? When flying in
a commercial jet airplane?

18. A basketball player dribbling down the court
usually keeps his eyes fixed on the players around
him. He is moving fast. Why doesn’t he need to
keep his eyes on the ball?

19. If someone is riding in the back of a pickup truck
and throws a softball straight backward, is it
possible for the ball to fall straight down as viewed
by a person standing at the side of the road?
Under what condition would this occur? How
would the motion of the ball appear to the person
who threw it?

20. The hat of a jogger running at constant velocity
falls off the back of his head. Draw a sketch
showing the path of the hat in the jogger’s frame
of reference. Draw its path as viewed by a
stationary observer.

21. A clod of dirt falls from the bed of a moving truck.
It strikes the ground directly below the end of the
truck. What is the direction of its velocity relative
to the truck just before it hits? Is this the same as
the direction of its velocity relative to ground just
before it hits? Explain your answers.

Problems & Exercises
3.2 Vector Addition and Subtraction:
Graphical Methods

Use graphical methods to solve these problems. You
may assume data taken from graphs is accurate to
three digits.

1. Find the following for path A in Figure 3.49: (a) the
total distance traveled, and (b) the magnitude and
direction of the displacement from start to finish.

FIGURE 3.49 The various lines represent paths taken by
different people walking in a city. All blocks are 120 m on a
side.
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2. Find the following for path B in Figure 3.49: (a) the
total distance traveled, and (b) the magnitude and
direction of the displacement from start to finish.

3. Find the north and east components of the
displacement for the hikers shown in Figure 3.47.

4. Suppose you walk 18.0 m straight west and then
25.0 m straight north. How far are you from your
starting point, and what is the compass direction of
a line connecting your starting point to your final
position? (If you represent the two legs of the walk
as vector displacements and , as in Figure 3.50,
then this problem asks you to find their sum

.)

FIGURE 3.50 The two displacements and add to give a
total displacement having magnitude and direction .

5. Suppose you first walk 12.0 m in a direction
west of north and then 20.0 m in a direction
south of west. How far are you from your starting
point, and what is the compass direction of a line
connecting your starting point to your final position?
(If you represent the two legs of the walk as vector
displacements and , as in Figure 3.51, then this
problem finds their sum .)

FIGURE 3.51

6. Repeat the problem above, but reverse the order of
the two legs of the walk; show that you get the
same final result. That is, you first walk leg , which
is 20.0 m in a direction exactly south of west,
and then leg , which is 12.0 m in a direction
exactly west of north. (This problem shows that

.)
7. (a) Repeat the problem two problems prior, but for

the second leg you walk 20.0 m in a direction
). (b) Repeat the problem two problems prior,

but now you first walk 20.0 m in a direction
east of south (which is equivalent to subtracting
from —that is, to finding ).
Show that this is the case.

8. Show that the order of addition of three vectors
does not affect their sum. Show this property by
choosing any three vectors , , and , all having
different lengths and directions. Find the sum

then find their sum when added in a
different order and show the result is the same.
(There are five other orders in which , , and
can be added; choose only one.)

9. Show that the sum of the vectors discussed in
Example 3.2 gives the result shown in Figure 3.23.

10. Find the magnitudes of velocities and in
Figure 3.52

FIGURE 3.52 The two velocities and add to give a
total .

11. Find the components of along the x- and
y-axes in Figure 3.52.

12. Find the components of along a set of
perpendicular axes rotated counterclockwise
relative to those in Figure 3.52.
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3.3 Vector Addition and Subtraction:
Analytical Methods

13. Find the following for path C in Figure 3.53: (a) the
total distance traveled and (b) the magnitude and
direction of the displacement from start to finish.
In this part of the problem, explicitly show how
you follow the steps of the analytical method of
vector addition.

FIGURE 3.53 The various lines represent paths taken by
different people walking in a city. All blocks are 120 m on a
side.

14. Find the following for path D in Figure 3.53: (a) the
total distance traveled and (b) the magnitude and
direction of the displacement from start to finish.
In this part of the problem, explicitly show how
you follow the steps of the analytical method of
vector addition.

15. Find the north and east components of the
displacement from San Francisco to Sacramento
shown in Figure 3.54.

FIGURE 3.54

16. Solve the following problem using analytical
techniques: Suppose you walk 18.0 m straight
west and then 25.0 m straight north. How far are
you from your starting point, and what is the
compass direction of a line connecting your
starting point to your final position? (If you
represent the two legs of the walk as vector
displacements and , as in Figure 3.55, then
this problem asks you to find their sum

.)

FIGURE 3.55 The two displacements and add to give a
total displacement having magnitude and direction .

Note that you can also solve this graphically.
Discuss why the analytical technique for solving
this problem is potentially more accurate than the
graphical technique.

17. Repeat Exercise 3.16 using analytical techniques,
but reverse the order of the two legs of the walk
and show that you get the same final result. (This
problem shows that adding them in reverse order
gives the same result—that is, .)
Discuss how taking another path to reach the
same point might help to overcome an obstacle
blocking your other path.

18. You drive in a straight line in a direction
east of north. (a) Find the distances you would

have to drive straight east and then straight north
to arrive at the same point. (This determination is
equivalent to find the components of the
displacement along the east and north directions.)
(b) Show that you still arrive at the same point if
the east and north legs are reversed in order.

19. Do Exercise 3.16 again using analytical techniques
and change the second leg of the walk to
straight south. (This is equivalent to subtracting
from —that is, finding ) (b) Repeat
again, but now you first walk north and
then east. (This is equivalent to subtract
from —that is, to find . Is that
consistent with your result?)
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20. A new landowner has a triangular piece of flat land
she wishes to fence. Starting at the west corner,
she measures the first side to be 80.0 m long and
the next to be 105 m. These sides are represented
as displacement vectors from in Figure 3.56.
She then correctly calculates the length and
orientation of the third side . What is her result?

FIGURE 3.56

21. You fly in a straight line in still air in the
direction south of west. (a) Find the
distances you would have to fly straight south and
then straight west to arrive at the same point.
(This determination is equivalent to finding the
components of the displacement along the south
and west directions.) (b) Find the distances you
would have to fly first in a direction south of
west and then in a direction west of north.
These are the components of the displacement
along a different set of axes—one rotated .

22. A farmer wants to fence off a four-sided plot of flat
land. They measure the first three sides, shown as

and in Figure 3.57, and then correctly
calculate the length and orientation of the fourth
side . What is their result?

FIGURE 3.57

23. In an attempt to escape his island, Gilligan builds
a raft and sets to sea. The wind shifts a great deal
during the day, and he is blown along the following
straight lines: north of west; then

south of east; then
south of west; then straight east; then

east of north; then
south of west; and finally north of
east. What is his final position relative to the
island?

24. Suppose a pilot flies in a direction
north of east and then flies in a direction

north of east as shown in Figure 3.58. Find her
total distance from the starting point and the
direction of the straight-line path to the final
position. Discuss qualitatively how this flight
would be altered by a wind from the north and
how the effect of the wind would depend on both
wind speed and the speed of the plane relative to
the air mass.

FIGURE 3.58

3.4 Projectile Motion

25. A projectile is launched at ground level with an
initial speed of 50.0 m/s at an angle of
above the horizontal. It strikes a target above the
ground 3.00 seconds later. What are the and
distances from where the projectile was launched
to where it lands?

26. A ball is kicked with an initial velocity of 16 m/s in
the horizontal direction and 12 m/s in the vertical
direction. (a) At what speed does the ball hit the
ground? (b) For how long does the ball remain in
the air? (c)What maximum height is attained by
the ball?
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27. A ball is thrown horizontally from the top of a
60.0-m building and lands 100.0 m from the base
of the building. Ignore air resistance. (a) How long
is the ball in the air? (b) What must have been the
initial horizontal component of the velocity? (c)
What is the vertical component of the velocity just
before the ball hits the ground? (d) What is the
velocity (including both the horizontal and vertical
components) of the ball just before it hits the
ground?

28. (a) A daredevil is attempting to jump his
motorcycle over a line of buses parked end to end
by driving up a ramp at a speed of

. How many buses can he
clear if the top of the takeoff ramp is at the same
height as the bus tops and the buses are 20.0 m
long? (b) Discuss what your answer implies about
the margin of error in this act—that is, consider
how much greater the range is than the horizontal
distance he must travel to miss the end of the last
bus. (Neglect air resistance.)

29. An archer shoots an arrow at a 75.0 m distant
target; the bull’s-eye of the target is at same
height as the release height of the arrow. (a) At
what angle must the arrow be released to hit the
bull’s-eye if its initial speed is 35.0 m/s? In this
part of the problem, explicitly show how you
follow the steps involved in solving projectile
motion problems. (b) There is a large tree halfway
between the archer and the target with an
overhanging horizontal branch 3.50 m above the
release height of the arrow. Will the arrow go over
or under the branch?

30. A rugby player passes the ball 7.00 m across the
field, where it is caught at the same height as it
left his hand. (a) At what angle was the ball thrown
if its initial speed was 12.0 m/s, assuming that the
smaller of the two possible angles was used? (b)
What other angle gives the same range, and why
would it not be used? (c) How long did this pass
take?

31. Verify the ranges for the projectiles in Figure
3.38(a) for and the given initial velocities.

32. Verify the ranges shown for the projectiles in
Figure 3.38(b) for an initial velocity of 50 m/s at
the given initial angles.

33. The cannon on a battleship can fire a shell a
maximum distance of 32.0 km. (a) Calculate the
initial velocity of the shell. (b) What maximum
height does it reach? (At its highest, the shell is
above 60% of the atmosphere—but air resistance
is not really negligible as assumed to make this
problem easier.) (c) The ocean is not flat, because
the Earth is curved. Assume that the radius of the
Earth is . How many meters lower
will its surface be 32.0 km from the ship along a
horizontal line parallel to the surface at the ship?
Does your answer imply that error introduced by
the assumption of a flat Earth in projectile motion
is significant here?

34. An arrow is shot from a height of 1.5 m toward a
cliff of height . It is shot with a velocity of 30
m/s at an angle of above the horizontal. It
lands on the top edge of the cliff 4.0 s later. (a)
What is the height of the cliff? (b) What is the
maximum height reached by the arrow along its
trajectory? (c) What is the arrow’s impact speed
just before hitting the cliff?

35. In the standing broad jump, one squats and then
pushes off with the legs to see how far one can
jump. Suppose the extension of the legs from the
crouch position is 0.600 m and the acceleration
achieved from this position is 1.25 times the
acceleration due to gravity, . How far can they
jump? State your assumptions. (Increased range
can be achieved by swinging the arms in the
direction of the jump.)

36. The world long jump record is 8.95 m (Mike
Powell, USA, 1991). Treated as a projectile, what
is the maximum range obtainable by a person if he
has a take-off speed of 9.5 m/s? State your
assumptions.

37. Serving at a speed of 170 km/h, a tennis player
hits the ball at a height of 2.5 m and an angle
below the horizontal. The base line is 11.9 m from
the net, which is 0.91 m high. What is the angle
such that the ball just crosses the net? Will the
ball land in the service box, whose service line is
6.40 m from the net?

38. A football quarterback is moving straight
backward at a speed of 2.00 m/s when he throws
a pass to a player 18.0 m straight downfield. (a) If
the ball is thrown at an angle of relative to the
ground and is caught at the same height as it is
released, what is its initial speed relative to the
ground? (b) How long does it take to get to the
receiver? (c) What is its maximum height above its
point of release?
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39. Gun sights are adjusted to aim high to compensate
for the effect of gravity, effectively making the gun
accurate only for a specific range. (a) If a gun is
sighted to hit targets that are at the same height
as the gun and 100.0 m away, how low will the
bullet hit if aimed directly at a target 150.0 m
away? The muzzle velocity of the bullet is 275 m/
s. (b) Discuss qualitatively how a larger muzzle
velocity would affect this problem and what would
be the effect of air resistance.

40. An eagle is flying horizontally at a speed of 3.00
m/s when the fish in her talons wiggles loose and
falls into the lake 5.00 m below. Calculate the
velocity of the fish relative to the water when it
hits the water.

41. An owl is carrying a mouse to the chicks in its
nest. Its position at that time is 4.00 m west and
12.0 m above the center of the 30.0 cm diameter
nest. The owl is flying east at 3.50 m/s at an angle
30.0º below the horizontal when it accidentally
drops the mouse. Is the owl lucky enough to have
the mouse hit the nest? To answer this question,
calculate the horizontal position of the mouse
when it has fallen 12.0 m.

42. Suppose a soccer player kicks the ball from a
distance 30 m toward the goal. Find the initial
speed of the ball if it just passes over the goal, 2.4
m above the ground, given the initial direction to
be above the horizontal.

43. Can a goalkeeper at her/ his goal kick a soccer ball
into the opponent’s goal without the ball touching
the ground? The distance will be about 95 m. A
goalkeeper can give the ball a speed of 30 m/s.

44. The free throw line in basketball is 4.57 m (15 ft)
from the basket, which is 3.05 m (10 ft) above the
floor. A player standing on the free throw line
throws the ball with an initial speed of 8.15 m/s,
releasing it at a height of 2.44 m (8 ft) above the
floor. At what angle above the horizontal must the
ball be thrown to exactly hit the basket? Note that
most players will use a large initial angle rather
than a flat shot because it allows for a larger
margin of error. Explicitly show how you follow the
steps involved in solving projectile motion
problems.

45. In 2007, Michael Carter (U.S.) set a world record
in the shot put with a throw of 24.77 m. What was
the initial speed of the shot if he released it at a
height of 2.10 m and threw it at an angle of
above the horizontal? (Although the maximum
distance for a projectile on level ground is
achieved at when air resistance is neglected,
the actual angle to achieve maximum range is
smaller; thus, will give a longer range than
in the shot put.)

46. A basketball player is running at directly
toward the basket when he jumps into the air to
dunk the ball. He maintains his horizontal velocity.
(a) What vertical velocity does he need to rise
0.750 m above the floor? (b) How far from the
basket (measured in the horizontal direction) must
he start his jump to reach his maximum height at
the same time as he reaches the basket?

47. A football player punts the ball at a angle.
Without an effect from the wind, the ball would
travel 60.0 m horizontally. (a) What is the initial
speed of the ball? (b) When the ball is near its
maximum height it experiences a brief gust of
wind that reduces its horizontal velocity by 1.50
m/s. What distance does the ball travel
horizontally?

48. Prove that the trajectory of a projectile is
parabolic, having the form . To
obtain this expression, solve the equation

for and substitute it into the expression
for (These equations describe
the and positions of a projectile that starts at
the origin.) You should obtain an equation of the
form where and are constants.

49. Derive for the range of a projectile
on level ground by finding the time at which
becomes zero and substituting this value of into
the expression for , noting that

50. Unreasonable Results (a) Find the maximum range
of a super cannon that has a muzzle velocity of 4.0
km/s. (b) What is unreasonable about the range
you found? (c) Is the premise unreasonable or is
the available equation inapplicable? Explain your
answer. (d) If such a muzzle velocity could be
obtained, discuss the effects of air resistance,
thinning air with altitude, and the curvature of the
Earth on the range of the super cannon.
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51. Construct Your Own Problem Consider a ball
tossed over a fence. Construct a problem in which
you calculate the ball’s needed initial velocity to
just clear the fence. Among the things to
determine are; the height of the fence, the
distance to the fence from the point of release of
the ball, and the height at which the ball is
released. You should also consider whether it is
possible to choose the initial speed for the ball
and just calculate the angle at which it is thrown.
Also examine the possibility of multiple solutions
given the distances and heights you have chosen.

3.5 Addition of Velocities

52. Bryan Allen pedaled a human-powered aircraft
across the English Channel from the cliffs of Dover
to Cap Gris-Nez on June 12, 1979. (a) He flew for
169 min at an average velocity of 3.53 m/s in a
direction south of east. What was his total
displacement? (b) Allen encountered a headwind
averaging 2.00 m/s almost precisely in the
opposite direction of his motion relative to the
Earth. What was his average velocity relative to
the air? (c) What was his total displacement
relative to the air mass?

53. A seagull flies at a velocity of 9.00 m/s straight
into the wind. (a) If it takes the bird 20.0 min to
travel 6.00 km relative to the Earth, what is the
velocity of the wind? (b) If the bird turns around
and flies with the wind, how long will he take to
return 6.00 km? (c) Discuss how the wind affects
the total round-trip time compared to what it
would be with no wind.

54. Near the end of a marathon race, the first two
runners are separated by a distance of 45.0 m.
The front runner has a velocity of 3.50 m/s, and
the second a velocity of 4.20 m/s. (a) What is the
velocity of the second runner relative to the first?
(b) If the front runner is 250 m from the finish line,
who will win the race, assuming they run at
constant velocity? (c) What distance ahead will the
winner be when she crosses the finish line?

55. Verify that the coin dropped by the airline
passenger in the Example 3.8 travels 144 m
horizontally while falling 1.50 m in the frame of
reference of the Earth.

56. A football quarterback is moving straight
backward at a speed of 2.00 m/s when he throws
a pass to a player 18.0 m straight downfield. The
ball is thrown at an angle of relative to the
ground and is caught at the same height as it is
released. What is the initial velocity of the ball
relative to the quarterback ?

57. A ship sets sail from Rotterdam, The Netherlands,
heading due north at 7.00 m/s relative to the
water. The local ocean current is 1.50 m/s in a
direction north of east. What is the velocity
of the ship relative to the Earth?

58. (a) A jet airplane flying from Darwin, Australia, has
an air speed of 260 m/s in a direction south of
west. It is in the jet stream, which is blowing at
35.0 m/s in a direction south of east. What is
the velocity of the airplane relative to the Earth?
(b) Discuss whether your answers are consistent
with your expectations for the effect of the wind
on the plane’s path.

59. (a) In what direction would the ship in Exercise
3.57 have to travel in order to have a velocity
straight north relative to the Earth, assuming its
speed relative to the water remains ? (b)
What would its speed be relative to the Earth?

60. (a) Another airplane is flying in a jet stream that is
blowing at 45.0 m/s in a direction south of
east (as in Exercise 3.58). Its direction of motion
relative to the Earth is south of west, while
its direction of travel relative to the air is
south of west. What is the airplane’s speed
relative to the air mass? (b) What is the airplane’s
speed relative to the Earth?

61. A sandal is dropped from the top of a 15.0-m-high
mast on a ship moving at 1.75 m/s due south.
Calculate the velocity of the sandal when it hits
the deck of the ship: (a) relative to the ship and (b)
relative to a stationary observer on shore. (c)
Discuss how the answers give a consistent result
for the position at which the sandal hits the deck.

62. The velocity of the wind relative to the water is
crucial to sailboats. Suppose a sailboat is in an
ocean current that has a velocity of 2.20 m/s in a
direction east of north relative to the Earth.
It encounters a wind that has a velocity of 4.50
m/s in a direction of south of west relative to
the Earth. What is the velocity of the wind relative
to the water?
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63. The great astronomer Edwin Hubble discovered
that all distant galaxies are receding from our
Milky Way Galaxy with velocities proportional to
their distances. It appears to an observer on the
Earth that we are at the center of an expanding
universe. Figure 3.59 illustrates this for five
galaxies lying along a straight line, with the Milky
Way Galaxy at the center. Using the data from the
figure, calculate the velocities: (a) relative to
galaxy 2 and (b) relative to galaxy 5. The results
mean that observers on all galaxies will see
themselves at the center of the expanding
universe, and they would likely be aware of
relative velocities, concluding that it is not
possible to locate the center of expansion with the
given information.

FIGURE 3.59 Five galaxies on a straight line, showing their
distances and velocities relative to the Milky Way (MW)
Galaxy. The distances are in millions of light years (Mly),
where a light year is the distance light travels in one year.
The velocities are nearly proportional to the distances. The
sizes of the galaxies are greatly exaggerated; an average
galaxy is about 0.1 Mly across.

64. (a) Use the distance and velocity data in Figure
3.59 to find the rate of expansion as a function of
distance.
(b) If you extrapolate back in time, how long ago
would all of the galaxies have been at
approximately the same position? The two parts of
this problem give you some idea of how the
Hubble constant for universal expansion and the
time back to the Big Bang are determined,
respectively.

65. An athlete crosses a 25-m-wide river by
swimming perpendicular to the water current at a
speed of 0.5 m/s relative to the water. They reach
the opposite side at a distance 40 m downstream
from the starting point. How fast is the water in
the river flowing with respect to the ground? What
is the speed of the swimmer with respect to a
friend at rest on the ground?

66. A ship sailing in the Gulf Stream is heading
west of north at a speed of 4.00 m/s relative to the
water. Its velocity relative to the Earth is

west of north. What is the velocity of the
Gulf Stream? (The velocity obtained is typical for
the Gulf Stream a few hundred kilometers off the
east coast of the United States.)

67. An ice hockey player is moving at 8.00 m/s when
they hit the puck toward the goal. The speed of
the puck relative to the player is 29.0 m/s. The
line between the center of the goal and the player
makes a angle relative to their path as
shown in Figure 3.60. What angle must the puck’s
velocity make relative to the player (in their frame
of reference) to hit the center of the goal?

FIGURE 3.60 An ice hockey player moving across the rink
must shoot backward to give the puck a velocity toward the
goal.

68. Unreasonable Results Suppose you wish to shoot
supplies straight up to astronauts in an orbit
36,000 km above the surface of the Earth. (a) At
what velocity must the supplies be launched? (b)
What is unreasonable about this velocity? (c) Is
there a problem with the relative velocity between
the supplies and the astronauts when the supplies
reach their maximum height? (d) Is the premise
unreasonable or is the available equation
inapplicable? Explain your answer.

69. Unreasonable Results A commercial airplane has
an air speed of due east and flies with a
strong tailwind. It travels 3000 km in a direction

south of east in 1.50 h. (a) What was the
velocity of the plane relative to the ground? (b)
Calculate the magnitude and direction of the
tailwind’s velocity. (c) What is unreasonable about
both of these velocities? (d) Which premise is
unreasonable?

70. Construct Your Own Problem Consider an airplane
headed for a runway in a cross wind. Construct a
problem in which you calculate the angle the
airplane must fly relative to the air mass in order
to have a velocity parallel to the runway. Among
the things to consider are the direction of the
runway, the wind speed and direction (its velocity)
and the speed of the plane relative to the air mass.
Also calculate the speed of the airplane relative to
the ground. Discuss any last minute maneuvers
the pilot might have to perform in order for the
plane to land with its wheels pointing straight
down the runway.
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71. Critical Thinking Two identical spring-loaded
launchers are fixed to the end of a table. Launcher
A is inclined above the horizontal and launcher
B is inclined above the horizontal. (a) Which of
these launchers will fire the ball the greatest
vertical height above the launcher before it
crashes into the ground? (b) Based on
experimental data, an equation that fits the data is
suggested for the vertical height above the
launcher, y, which may not be correct:

, where K is a constant with
appropriate units, is the initial velocity of the
launcher, and is the angle relative to the x-axis
of the launcher. Is this equation consistent with
your answer from part a? Explain why or why not.
Does this equation make sense? Explain why or
why not. (c) Graph the magnitude of the velocity
vs. vertical height for both launcher A and B.
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