
We can solve this equation for the speed or

This expression for the speed of a simple harmonic oscillator is exactly the same as the equation obtained from
conservation of energy considerations in Energy and the Simple Harmonic Oscillator.You can begin to see that it is
possible to get all of the characteristics of simple harmonic motion from an analysis of the projection of uniform
circular motion.

Finally, let us consider the period of the motion of the projection. This period is the time it takes the point P to
complete one revolution. That time is the circumference of the circle divided by the velocity around the circle,

. Thus, the period is

We know from conservation of energy considerations that

Solving this equation for gives

Substituting this expression into the equation for yields

Thus, the period of the motion is the same as for a simple harmonic oscillator. We have determined the period for
any simple harmonic oscillator using the relationship between uniform circular motion and simple harmonic motion.

Some modules occasionally refer to the connection between uniform circular motion and simple harmonic motion.
Moreover, if you carry your study of physics and its applications to greater depths, you will find this relationship
useful. It can, for example, help to analyze how waves add when they are superimposed.

CHECK YOUR UNDERSTANDING

Identify an object that undergoes uniform circular motion. Describe how you could trace the simple harmonic
motion of this object as a wave.
Solution
A record player undergoes uniform circular motion. You could attach dowel rod to one point on the outside edge of
the turntable and attach a pen to the other end of the dowel. As the record player turns, the pen will move. You can
drag a long piece of paper under the pen, capturing its motion as a wave.

16.7 Damped Harmonic Motion
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Compare and discuss underdamped and overdamped oscillating systems.
• Explain critically damped system.
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FIGURE 16.19 In order to counteract dampening forces, this mom needs to keep pushing the swing. (credit: Erik A. Johnson, Flickr)

A guitar string stops oscillating a few seconds after being plucked. To keep a child happy on a swing, you must keep
pushing. Although we can often make friction and other non-conservative forces negligibly small, completely
undamped motion is rare. In fact, we may even want to damp oscillations, such as with car shock absorbers.

For a system that has a small amount of damping, the period and frequency are nearly the same as for simple
harmonic motion, but the amplitude gradually decreases as shown in Figure 16.20. This occurs because the non-
conservative damping force removes energy from the system, usually in the form of thermal energy. In general,
energy removal by non-conservative forces is described as

where is work done by a non-conservative force (here the damping force). For a damped harmonic oscillator,
is negative because it removes mechanical energy (KE + PE) from the system.

FIGURE 16.20 In this graph of displacement versus time for a harmonic oscillator with a small amount of damping, the amplitude slowly
decreases, but the period and frequency are nearly the same as if the system were completely undamped.

If you gradually increase the amount of damping in a system, the period and frequency begin to be affected,
because damping opposes and hence slows the back and forth motion. (The net force is smaller in both directions.)
If there is very large damping, the system does not even oscillate—it slowly moves toward equilibrium. Figure 16.21
shows the displacement of a harmonic oscillator for different amounts of damping. When we want to damp out
oscillations, such as in the suspension of a car, we may want the system to return to equilibrium as quickly as
possible Critical damping is defined as the condition in which the damping of an oscillator results in it returning as
quickly as possible to its equilibrium position The critically damped system may overshoot the equilibrium position,
but if it does, it will do so only once. Critical damping is represented by Curve A in Figure 16.21. With less-than
critical damping, the system will return to equilibrium faster but will overshoot and cross over one or more times.
Such a system is underdamped; its displacement is represented by the curve in Figure 16.20. Curve B in Figure
16.21 represents an overdamped system. As with critical damping, it too may overshoot the equilibrium position,
but will reach equilibrium over a longer period of time.
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FIGURE 16.21 Displacement versus time for a critically damped harmonic oscillator (A) and an overdamped harmonic oscillator (B). The
critically damped oscillator returns to equilibrium at in the smallest time possible without overshooting.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium
as well. In addition, a constant force applied to a critically damped system moves the system to a new equilibrium
position in the shortest time possible without overshooting or oscillating about the new position. For example, when
you stand on bathroom scales that have a needle gauge, the needle moves to its equilibrium position without
oscillating. It would be quite inconvenient if the needle oscillated about the new equilibrium position for a long time
before settling. Damping forces can vary greatly in character. Friction, for example, is sometimes independent of
velocity (as assumed in most places in this text). But many damping forces depend on velocity—sometimes in
complex ways, sometimes simply being proportional to velocity.

EXAMPLE 16.7

Damping an Oscillatory Motion: Friction on an Object Connected to a Spring
Damping oscillatory motion is important in many systems, and the ability to control the damping is even more so.
This is generally attained using non-conservative forces such as the friction between surfaces, and viscosity for
objects moving through fluids. The following example considers friction. Suppose a 0.200-kg object is connected to
a spring as shown in Figure 16.22, but there is simple friction between the object and the surface, and the
coefficient of friction is equal to 0.0800. (a) What is the frictional force between the surfaces? (b) What total
distance does the object travel if it is released 0.100 m from equilibrium, starting at ? The force constant of the
spring is .

FIGURE 16.22 The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless
surface.
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Strategy

This problem requires you to integrate your knowledge of various concepts regarding waves, oscillations, and
damping. To solve an integrated concept problem, you must first identify the physical principles involved. Part (a) is
about the frictional force. This is a topic involving the application of Newton’s Laws. Part (b) requires an
understanding of work and conservation of energy, as well as some understanding of horizontal oscillatory systems.

Now that we have identified the principles we must apply in order to solve the problems, we need to identify the
knowns and unknowns for each part of the question, as well as the quantity that is constant in Part (a) and Part (b)
of the question.

Solution a

1. Choose the proper equation: Friction is .
2. Identify the known values.
3. Enter the known values into the equation:

4. Calculate and convert units:

Discussion a

The force here is small because the system and the coefficients are small.

Solution b

Identify the known:

• The system involves elastic potential energy as the spring compresses and expands, friction that is related to
the work done, and the kinetic energy as the body speeds up and slows down.

• Energy is not conserved as the mass oscillates because friction is a non-conservative force.
• The motion is horizontal, so gravitational potential energy does not need to be considered.
• Because the motion starts from rest, the energy in the system is initially . This energy is

removed by work done by friction , where is the total distance traveled and is the force
of friction. When the system stops moving, the friction force will balance the force exerted by the spring, so

where is the final position and is given by

1. By equating the work done to the energy removed, solve for the distance .
2. The work done by the non-conservative forces equals the initial, stored elastic potential energy. Identify the

correct equation to use:

3. Recall that .
4. Enter the friction as into , thus

5. Combine these two equations to find

6. Solve the equation for :

7. Enter the known values into the resulting equation:
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8. Calculate and convert units:

Discussion b

This is the total distance traveled back and forth across , which is the undamped equilibrium position. The
number of oscillations about the equilibrium position will be more than because
the amplitude of the oscillations is decreasing with time. At the end of the motion, this system will not return to

for this type of damping force, because static friction will exceed the restoring force. This system is
underdamped. In contrast, an overdamped system with a simple constant damping force would not cross the
equilibrium position a single time. For example, if this system had a damping force 20 times greater, it would
only move 0.0484 m toward the equilibrium position from its original 0.100-m position.

This worked example illustrates how to apply problem-solving strategies to situations that integrate the different
concepts you have learned. The first step is to identify the physical principles involved in the problem. The second
step is to solve for the unknowns using familiar problem-solving strategies. These are found throughout the text,
and many worked examples show how to use them for single topics. In this integrated concepts example, you can
see how to apply them across several topics. You will find these techniques useful in applications of physics outside
a physics course, such as in your profession, in other science disciplines, and in everyday life.

CHECK YOUR UNDERSTANDING

Why are completely undamped harmonic oscillators so rare?
Solution
Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

CHECK YOUR UNDERSTANDING

Describe the difference between overdamping, underdamping, and critical damping.
Solution
An overdamped system moves slowly toward equilibrium. An underdamped system moves quickly to equilibrium,
but will oscillate about the equilibrium point as it does so. A critically damped system moves as quickly as possible
toward equilibrium without oscillating about the equilibrium.

16.8 Forced Oscillations and Resonance
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe resonance of a paddle ball on a string.
• Observe amplitude of a damped harmonic oscillator.
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