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What do an ocean buoy, a child in a swing, the cone
inside a speaker, a guitar, atoms in a crystal, the motion of chest cavities, and the beating of hearts all have in
common? They all oscillate—-that is, they move back and forth between two points. Many systems oscillate, and
they have certain characteristics in common. All oscillations involve force and energy. You push a child in a swing to
get the motion started. The energy of atoms vibrating in a crystal can be increased with heat. You put energy into a
guitar string when you pluck it.

Some oscillations create waves. A guitar creates sound waves. You can make water waves in a swimming pool by
slapping the water with your hand. You can no doubt think of other types of waves. Some, such as water waves, are

FIGURE 16.1 There are at least four types of waves in this picture—only the water waves are evident. There are also sound waves, light
waves, and waves on the guitar strings. (credit: John Norton)
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visible. Some, such as sound waves, are not. But every wave is a disturbance that moves from its source and carries
energy. Other examples of waves include earthquakes and visible light. Even subatomic particles, such as electrons,
can behave like waves.

By studying oscillatory motion and waves, we shall find that a small number of underlying principles describe all of
them and that wave phenomena are more common than you have ever imagined. We begin by studying the type of
force that underlies the simplest oscillations and waves. We will then expand our exploration of oscillatory motion
and waves to include concepts such as simple harmonic motion, uniform circular motion, and damped harmonic
motion. Finally, we will explore what happens when two or more waves share the same space, in the phenomena
known as superposition and interference.

Click to view content (https://openstax.org/books/college-physics-2e/pages/16-introduction-to-oscillatory-motion-
and-waves)
16.1 Hooke’s Law: Stress and Strain Revisited
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Explain Newton’s third law of motion with respect to stress and deformation.
• Describe the restoration of force and displacement.
• Calculate the energy in Hooke’s Law of deformation, and the stored energy in a spring.

FIGURE 16.2 When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the restoring force
opposing displacement. When the ruler is on the left, there is a force to the right, and vice versa.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object
would move in a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler
to the left as shown in Figure 16.2. The deformation of the ruler creates a force in the opposite direction, known as a
restoring force. Once released, the restoring force causes the ruler to move back toward its stable equilibrium
position, where the net force on it is zero. However, by the time the ruler gets there, it gains momentum and
continues to move to the right, producing the opposite deformation. It is then forced to the left, back through
equilibrium, and the process is repeated until dissipative forces dampen the motion. These forces remove
mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and
strain were covered in Newton’s Third Law of Motion, the name was given to this relationship between force and
displacement was Hooke’s law:

Here, is the restoring force, is the displacement from equilibrium or deformation, and is a constant related to
the difficulty in deforming the system. The minus sign indicates the restoring force is in the direction opposite to the
displacement.
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FIGURE 16.3 (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net
force is zero at the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the
opposite direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the
absence of damping (caused by frictional forces), the ruler reaches its original position. From there, the motion will repeat itself.

The force constant is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the
restoring force, and the stiffer the system. The units of are newtons per meter (N/m). For example, is directly
related to Young’s modulus when we stretch a string. Figure 16.4 shows a graph of the absolute value of the
restoring force versus the displacement for a system that can be described by Hooke’s law—a simple spring in this
case. The slope of the graph equals the force constant in newtons per meter. A common physics laboratory
exercise is to measure restoring forces created by springs, determine if they follow Hooke’s law, and calculate their
force constants if they do.

FIGURE 16.4 (a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a straight line
means that the system obeys Hooke’s law. The slope of the graph is the force constant . (b) The data in the graph were generated by
measuring the displacement of a spring from equilibrium while supporting various weights. The restoring force equals the weight
supported, if the mass is stationary.
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EXAMPLE 16.1

How Stiff Are Car Springs?

FIGURE 16.5 The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its suspension
system. (credit: exfordy on Flickr)

What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?

Strategy

Consider the car to be in its equilibrium position before the person gets in. The car then settles down 1.20 cm,
which means it is displaced to a position . At that point, the springs supply a restoring force
equal to the person’s weight . We take this force to be in Hooke’s law.
Knowing and , we can then solve the force constant .

Solution

1. Solve Hooke’s law, , for :

Substitute known values and solve :

Discussion

Note that and have opposite signs because they are in opposite directions—the restoring force is up, and the
displacement is down. Also, note that the car would oscillate up and down when the person got in if it were not for
damping (due to frictional forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock
absorbers.

Energy in Hooke’s Law of Deformation

In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether
you pluck a guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal,
sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy.
The potential energy stored in a spring is . Here, we generalize the idea to elastic potential energy for a
deformation of any system that can be described by Hooke’s law. Hence,
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where is the elastic potential energy stored in any deformed system that obeys Hooke’s law and has a
displacement from equilibrium and a force constant .

It is possible to find the work done in deforming a system in order to find the energy stored. This work is performed
by an applied force . The applied force is exactly opposite to the restoring force (action-reaction), and so

. Figure 16.6 shows a graph of the applied force versus deformation for a system that can be described
by Hooke’s law. Work done on the system is force multiplied by distance, which equals the area under the curve or

(Method A in the figure). Another way to determine the work is to note that the force increases linearly
from 0 to , so that the average force is , the distance moved is , and thus

(Method B in the figure).

FIGURE 16.6 A graph of applied force versus distance for the deformation of a system that can be described by Hooke’s law is displayed.
The work done on the system equals the area under the graph or the area of the triangle, which is half its base multiplied by its height, or

.

EXAMPLE 16.2

Calculating Stored Energy: A Toy Gun Spring
We can use a toy gun’s spring mechanism to ask and answer two simple questions: (a) How much energy is stored in
the spring of a toy gun that has a force constant of 50.0 N/m and is compressed 0.150 m? (b) If you neglect friction
and the mass of the spring, at what speed will a 2.00-g projectile be ejected from the gun?

FIGURE 16.7 (a) In this image of the gun, the spring is uncompressed before being cocked. (b) The spring has been compressed a distance
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, and the projectile is in place. (c) When released, the spring converts elastic potential energy into kinetic energy.

Strategy for a

(a): The energy stored in the spring can be found directly from elastic potential energy equation, because and
are given.

Solution for a

Entering the given values for and yields

Strategy for b

Because there is no friction, the potential energy is converted entirely into kinetic energy. The expression for kinetic
energy can be solved for the projectile’s speed.

Solution for b

1. Identify known quantities:

2. Solve for :

3. Convert units:

Discussion

(a) and (b): This projectile speed is impressive for a toy gun (more than 80 km/h). The numbers in this problem seem
reasonable. The force needed to compress the spring is small enough for an adult to manage, and the energy
imparted to the dart is small enough to limit the damage it might do, especially because the darts in many of these
guns are made of soft material with a rubber tip. Yet, the speed of the dart is great enough for it to travel an
acceptable distance.

CHECK YOUR UNDERSTANDING

Envision holding the end of a ruler with one hand and deforming it with the other. When you let go, you can see the
oscillations of the ruler. In what way could you modify this simple experiment to increase the rigidity of the system?
Solution
You could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original
experiment.

CHECK YOUR UNDERSTANDING

If you apply a deforming force on an object and let it come to equilibrium, what happened to the work you did on the
system?
Solution
It was stored in the object as potential energy.

16.2 Period and Frequency in Oscillations
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe the vibrations of a guitar string.
• Determine the frequency of oscillations.
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