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We have dealt with
many situations in which fluids are static. But by their very definition, fluids flow. Examples come easily—a column
of smoke rises from a camp fire, water streams from a fire hose, blood courses through your veins. Why does rising
smoke curl and twist? How does a nozzle increase the speed of water emerging from a hose? How does the body
regulate blood flow? The physics of fluids in motion—fluid dynamics—allows us to answer these and many other
questions.

Click to view content (https://openstax.org/books/college-physics-2e/pages/12-introduction-to-fluid-dynamics-
and-its-biological-and-medical-applications)

FIGURE 12.1 Many fluids are flowing in this scene. Water from the hose and smoke from the fire are visible flows. Less visible are the flow
of air and the flow of fluids on the ground and within the people fighting the fire. (credit: Andrew Magill, Flickr)
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12.1 Flow Rate and Its Relation to Velocity
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Calculate flow rate.
• Define units of volume.
• Describe incompressible fluids.
• Explain the consequences of the equation of continuity.

Flow rate is defined to be the volume of fluid passing by some location through an area during a period of time, as
seen in Figure 12.2. In symbols, this can be written as

where is the volume and is the elapsed time.

The SI unit for flow rate is , but a number of other units for are in common use. For example, the heart of a
resting adult pumps blood at a rate of 5.00 liters per minute (L/min). Note that a liter (L) is 1/1000 of a cubic meter
or 1000 cubic centimeters ( or ). In this text we shall use whatever metric units are most
convenient for a given situation.

FIGURE 12.2 Flow rate is the volume of fluid per unit time flowing past a point through the area . Here the shaded cylinder of fluid flows
past point in a uniform pipe in time . The volume of the cylinder is and the average velocity is so that the flow rate is

.

EXAMPLE 12.1

Calculating Volume from Flow Rate: The Heart Pumps a Lot of Blood in a Lifetime
How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming the average flow rate is 5.00
L/min?

Strategy

Time and flow rate are given, and so the volume can be calculated from the definition of flow rate.

Solution

Solving for volume gives

Substituting known values yields

Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to about 200 times the volume
of water contained in a 6-lane 50-m lap pool.
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Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, think about
the flow rate of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also
depends on the size of the river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for
example. The precise relationship between flow rate and velocity is

where is the cross-sectional area and is the average velocity. This equation seems logical enough. The
relationship tells us that flow rate is directly proportional to both the magnitude of the average velocity (hereafter
referred to as the speed) and the size of a river, pipe, or other conduit. The larger the conduit, the greater its cross-
sectional area. Figure 12.2 illustrates how this relationship is obtained. The shaded cylinder has a volume

which flows past the point in a time . Dividing both sides of this relationship by gives

We note that and the average speed is . Thus the equation becomes .

Figure 12.3 shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is
incompressible, the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of
flow. In this case, because the cross-sectional area of the pipe decreases, the velocity must necessarily increase.
This logic can be extended to say that the flow rate must be the same at all points along the pipe. In particular, for
points 1 and 2,

This is called the equation of continuity and is valid for any incompressible fluid. The consequences of the equation
of continuity can be observed when water flows from a hose into a narrow spray nozzle: it emerges with a large
speed—that is the purpose of the nozzle. Conversely, when a river empties into one end of a reservoir, the water
slows considerably, perhaps picking up speed again when it leaves the other end of the reservoir. In other words,
speed increases when cross-sectional area decreases, and speed decreases when cross-sectional area increases.

FIGURE 12.3 When a tube narrows, the same volume occupies a greater length. For the same volume to pass points 1 and 2 in a given time,
the speed must be greater at point 2. The process is exactly reversible. If the fluid flows in the opposite direction, its speed will decrease
when the tube widens. (Note that the relative volumes of the two cylinders and the corresponding velocity vector arrows are not drawn to
scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are
compressible, and so the equation must be applied with caution to gases if they are subjected to compression or
expansion.

EXAMPLE 12.2

Calculating Fluid Speed: Speed Increases When a Tube Narrows
A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through
hose and nozzle is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.
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Strategy

We can use the relationship between flow rate and speed to find both velocities. We will use the subscript 1 for the
hose and 2 for the nozzle.

Solution for (a)

First, we solve for and note that the cross-sectional area is , yielding

Substituting known values and making appropriate unit conversions yields

Solution for (b)

We could repeat this calculation to find the speed in the nozzle , but we will use the equation of continuity to give
a somewhat different insight. Using the equation which states

solving for and substituting for the cross-sectional area yields

Substituting known values,

Discussion

A speed of 1.96 m/s is about right for water emerging from a nozzleless hose. The nozzle produces a considerably
faster stream merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius of
the tube, making for large effects when radius varies. We can blow out a candle at quite a distance, for example, by
pursing our lips, whereas blowing on a candle with our mouth wide open is quite ineffective.

In many situations, including in the cardiovascular system, branching of the flow occurs. The blood is pumped from
the heart into arteries that subdivide into smaller arteries (arterioles) which branch into very fine vessels called
capillaries. In this situation, continuity of flow is maintained but it is the sum of the flow rates in each of the
branches in any portion along the tube that is maintained. The equation of continuity in a more general form
becomes

where and are the number of branches in each of the sections along the tube.

EXAMPLE 12.3

Calculating Flow Speed and Vessel Diameter: Branching in the Cardiovascular System
The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a)
Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm.
(b) Blood also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is
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5.0 L/min, the speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is
, calculate the number of capillaries in the blood circulatory system.

Strategy

We can use to calculate the speed of flow in the aorta and then use the general form of the equation of
continuity to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by or for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

Solution for (b)

Using , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for (the

number of capillaries) gives . Converting all quantities to units of meters and seconds and substituting

into the equation above gives

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the
significant increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for
effective exchange to occur although it is equally important for the flow not to become stationary in order to avoid
the possibility of clotting. Does this large number of capillaries in the body seem reasonable? In active muscle, one
finds about 200 capillaries per , or about per 1 kg of muscle. For 20 kg of muscle, this amounts to
about capillaries.

12.2 Bernoulli’s Equation
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Explain the terms in Bernoulli’s equation.
• Explain how Bernoulli’s equation is related to conservation of energy.
• Explain how to derive Bernoulli’s principle from Bernoulli’s equation.
• Calculate with Bernoulli’s principle.
• List some applications of Bernoulli’s principle.

When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where
does that change in kinetic energy come from? The increased kinetic energy comes from the net work done on the
fluid to push it into the channel and the work done on the fluid by the gravitational force, if the fluid changes vertical
position. Recall the work-energy theorem,

There is a pressure difference when the channel narrows. This pressure difference results in a net force on the fluid:
recall that pressure times area equals force. The net work done increases the fluid’s kinetic energy. As a result, the
pressure will drop in a rapidly-moving fluid, whether or not the fluid is confined to a tube.

There are a number of common examples of pressure dropping in rapidly-moving fluids. Shower curtains have a
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