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We have dealt with
many situations in which fluids are static. But by their very definition, fluids flow. Examples come easily—a column
of smoke rises from a camp fire, water streams from a fire hose, blood courses through your veins. Why does rising
smoke curl and twist? How does a nozzle increase the speed of water emerging from a hose? How does the body
regulate blood flow? The physics of fluids in motion—fluid dynamics—allows us to answer these and many other
questions.

Click to view content (https://openstax.org/books/college-physics-2e/pages/12-introduction-to-fluid-dynamics-
and-its-biological-and-medical-applications)

FIGURE 12.1 Many fluids are flowing in this scene. Water from the hose and smoke from the fire are visible flows. Less visible are the flow
of air and the flow of fluids on the ground and within the people fighting the fire. (credit: Andrew Magill, Flickr)
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12.1 Flow Rate and Its Relation to Velocity
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Calculate flow rate.
• Define units of volume.
• Describe incompressible fluids.
• Explain the consequences of the equation of continuity.

Flow rate is defined to be the volume of fluid passing by some location through an area during a period of time, as
seen in Figure 12.2. In symbols, this can be written as

where is the volume and is the elapsed time.

The SI unit for flow rate is , but a number of other units for are in common use. For example, the heart of a
resting adult pumps blood at a rate of 5.00 liters per minute (L/min). Note that a liter (L) is 1/1000 of a cubic meter
or 1000 cubic centimeters ( or ). In this text we shall use whatever metric units are most
convenient for a given situation.

FIGURE 12.2 Flow rate is the volume of fluid per unit time flowing past a point through the area . Here the shaded cylinder of fluid flows
past point in a uniform pipe in time . The volume of the cylinder is and the average velocity is so that the flow rate is

.

EXAMPLE 12.1

Calculating Volume from Flow Rate: The Heart Pumps a Lot of Blood in a Lifetime
How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming the average flow rate is 5.00
L/min?

Strategy

Time and flow rate are given, and so the volume can be calculated from the definition of flow rate.

Solution

Solving for volume gives

Substituting known values yields

Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to about 200 times the volume
of water contained in a 6-lane 50-m lap pool.
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Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, think about
the flow rate of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also
depends on the size of the river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for
example. The precise relationship between flow rate and velocity is

where is the cross-sectional area and is the average velocity. This equation seems logical enough. The
relationship tells us that flow rate is directly proportional to both the magnitude of the average velocity (hereafter
referred to as the speed) and the size of a river, pipe, or other conduit. The larger the conduit, the greater its cross-
sectional area. Figure 12.2 illustrates how this relationship is obtained. The shaded cylinder has a volume

which flows past the point in a time . Dividing both sides of this relationship by gives

We note that and the average speed is . Thus the equation becomes .

Figure 12.3 shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is
incompressible, the same amount of fluid must flow past any point in the tube in a given time to ensure continuity of
flow. In this case, because the cross-sectional area of the pipe decreases, the velocity must necessarily increase.
This logic can be extended to say that the flow rate must be the same at all points along the pipe. In particular, for
points 1 and 2,

This is called the equation of continuity and is valid for any incompressible fluid. The consequences of the equation
of continuity can be observed when water flows from a hose into a narrow spray nozzle: it emerges with a large
speed—that is the purpose of the nozzle. Conversely, when a river empties into one end of a reservoir, the water
slows considerably, perhaps picking up speed again when it leaves the other end of the reservoir. In other words,
speed increases when cross-sectional area decreases, and speed decreases when cross-sectional area increases.

FIGURE 12.3 When a tube narrows, the same volume occupies a greater length. For the same volume to pass points 1 and 2 in a given time,
the speed must be greater at point 2. The process is exactly reversible. If the fluid flows in the opposite direction, its speed will decrease
when the tube widens. (Note that the relative volumes of the two cylinders and the corresponding velocity vector arrows are not drawn to
scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are
compressible, and so the equation must be applied with caution to gases if they are subjected to compression or
expansion.

EXAMPLE 12.2

Calculating Fluid Speed: Speed Increases When a Tube Narrows
A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through
hose and nozzle is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.
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Strategy

We can use the relationship between flow rate and speed to find both velocities. We will use the subscript 1 for the
hose and 2 for the nozzle.

Solution for (a)

First, we solve for and note that the cross-sectional area is , yielding

Substituting known values and making appropriate unit conversions yields

Solution for (b)

We could repeat this calculation to find the speed in the nozzle , but we will use the equation of continuity to give
a somewhat different insight. Using the equation which states

solving for and substituting for the cross-sectional area yields

Substituting known values,

Discussion

A speed of 1.96 m/s is about right for water emerging from a nozzleless hose. The nozzle produces a considerably
faster stream merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius of
the tube, making for large effects when radius varies. We can blow out a candle at quite a distance, for example, by
pursing our lips, whereas blowing on a candle with our mouth wide open is quite ineffective.

In many situations, including in the cardiovascular system, branching of the flow occurs. The blood is pumped from
the heart into arteries that subdivide into smaller arteries (arterioles) which branch into very fine vessels called
capillaries. In this situation, continuity of flow is maintained but it is the sum of the flow rates in each of the
branches in any portion along the tube that is maintained. The equation of continuity in a more general form
becomes

where and are the number of branches in each of the sections along the tube.

EXAMPLE 12.3

Calculating Flow Speed and Vessel Diameter: Branching in the Cardiovascular System
The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a)
Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm.
(b) Blood also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is
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5.0 L/min, the speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is
, calculate the number of capillaries in the blood circulatory system.

Strategy

We can use to calculate the speed of flow in the aorta and then use the general form of the equation of
continuity to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by or for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

Solution for (b)

Using , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for (the

number of capillaries) gives . Converting all quantities to units of meters and seconds and substituting

into the equation above gives

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the
significant increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for
effective exchange to occur although it is equally important for the flow not to become stationary in order to avoid
the possibility of clotting. Does this large number of capillaries in the body seem reasonable? In active muscle, one
finds about 200 capillaries per , or about per 1 kg of muscle. For 20 kg of muscle, this amounts to
about capillaries.

12.2 Bernoulli’s Equation
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Explain the terms in Bernoulli’s equation.
• Explain how Bernoulli’s equation is related to conservation of energy.
• Explain how to derive Bernoulli’s principle from Bernoulli’s equation.
• Calculate with Bernoulli’s principle.
• List some applications of Bernoulli’s principle.

When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where
does that change in kinetic energy come from? The increased kinetic energy comes from the net work done on the
fluid to push it into the channel and the work done on the fluid by the gravitational force, if the fluid changes vertical
position. Recall the work-energy theorem,

There is a pressure difference when the channel narrows. This pressure difference results in a net force on the fluid:
recall that pressure times area equals force. The net work done increases the fluid’s kinetic energy. As a result, the
pressure will drop in a rapidly-moving fluid, whether or not the fluid is confined to a tube.

There are a number of common examples of pressure dropping in rapidly-moving fluids. Shower curtains have a

12.14

12.15

12.16

12.2 • Bernoulli’s Equation 493



disagreeable habit of bulging into the shower stall when the shower is on. The high-velocity stream of water and air
creates a region of lower pressure inside the shower, and standard atmospheric pressure on the other side. The
pressure difference results in a net force inward pushing the curtain in. You may also have noticed that when
passing a truck on the highway, your car tends to veer toward it. The reason is the same—the high velocity of the air
between the car and the truck creates a region of lower pressure, and the vehicles are pushed together by greater
pressure on the outside. (See Figure 12.4.) This effect was observed as far back as the mid-1800s, when it was
found that trains passing in opposite directions tipped precariously toward one another.

FIGURE 12.4 An overhead view of a car passing a truck on a highway. Air passing between the vehicles flows in a narrower channel and
must increase its speed ( is greater than ), causing the pressure between them to drop ( is less than ). Greater pressure on the
outside pushes the car and truck together.

Bernoulli’s Equation

The relationship between pressure and velocity in fluids is described quantitatively by Bernoulli’s equation, named
after its discoverer, the Swiss scientist Daniel Bernoulli (1700–1782). Bernoulli’s equation states that for an
incompressible, frictionless fluid, the following sum is constant:

where is the absolute pressure, is the fluid density, is the velocity of the fluid, is the height above some
reference point, and is the acceleration due to gravity. If we follow a small volume of fluid along its path, various
quantities in the sum may change, but the total remains constant. Let the subscripts 1 and 2 refer to any two points
along the path that the bit of fluid follows; Bernoulli’s equation becomes

Bernoulli’s equation is a form of the conservation of energy principle. Note that the second and third terms are the
kinetic and potential energy with replaced by . In fact, each term in the equation has units of energy per unit
volume. We can prove this for the second term by substituting into it and gathering terms:

So is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we
find

Making Connections: Take-Home Investigation with a Sheet of Paper

Hold the short edge of a sheet of paper parallel to your mouth with one hand on each side of your mouth. The
page should slant downward over your hands. Blow over the top of the page. Describe what happens and explain
the reason for this behavior.
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so is the gravitational potential energy per unit volume. Note that pressure has units of energy per unit
volume, too. Since , its units are . If we multiply these by m/m, we obtain , or
energy per unit volume. Bernoulli’s equation is, in fact, just a convenient statement of conservation of energy for an
incompressible fluid in the absence of friction.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better,
we will look at a number of specific situations that simplify and illustrate its use and meaning.

Bernoulli’s Equation for Static Fluids

Let us first consider the very simple situation where the fluid is static—that is, . Bernoulli’s equation in
that case is

We can further simplify the equation by taking (we can always choose some height to be zero, just as we
often have done for other situations involving the gravitational force, and take all other heights to be relative to this).
In that case, we get

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the
fluid, the depth increases by , and consequently, is greater than by an amount . In the very simplest
case, is zero at the top of the fluid, and we get the familiar relationship . (Recall that and

) Bernoulli’s equation includes the fact that the pressure due to the weight of a fluid is . Although
we introduce Bernoulli’s equation for fluid flow, it includes much of what we studied for static fluids in the preceding
chapter.

Bernoulli’s Principle—Bernoulli’s Equation at Constant Depth

Another important situation is one in which the fluid moves but its depth is constant—that is, . Under that
condition, Bernoulli’s equation becomes

Situations in which fluid flows at a constant depth are so important that this equation is often called Bernoulli’s
principle. It is Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of
fluid as we follow it along its path.) As we have just discussed, pressure drops as speed increases in a moving fluid.
We can see this from Bernoulli’s principle. For example, if is greater than in the equation, then must be
less than for the equality to hold.

EXAMPLE 12.4

Calculating Pressure: Pressure Drops as a Fluid Speeds Up
In Example 12.2, we found that the speed of water in a hose increased from 1.96 m/s to 25.5 m/s going from the
hose to the nozzle. Calculate the pressure in the hose, given that the absolute pressure in the nozzle is

(atmospheric, as it must be) and assuming level, frictionless flow.

12.20

Making Connections: Conservation of Energy

Conservation of energy applied to fluid flow produces Bernoulli’s equation. The net work done by the fluid’s
pressure results in changes in the fluid’s and per unit volume. If other forms of energy are involved in
fluid flow, Bernoulli’s equation can be modified to take these forms into account. Such forms of energy include
thermal energy dissipated because of fluid viscosity.
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Strategy

Level flow means constant depth, so Bernoulli’s principle applies. We use the subscript 1 for values in the hose and
2 for those in the nozzle. We are thus asked to find .

Solution

Solving Bernoulli’s principle for yields

Substituting known values,

Discussion

This absolute pressure in the hose is greater than in the nozzle, as expected since is greater in the nozzle. The
pressure in the nozzle must be atmospheric since it emerges into the atmosphere without other changes in
conditions.

Applications of Bernoulli’s Principle

There are a number of devices and situations in which fluid flows at a constant height and, thus, can be analyzed
with Bernoulli’s principle.

Entrainment
People have long put the Bernoulli principle to work by using reduced pressure in high-velocity fluids to move things
about. With a higher pressure on the outside, the high-velocity fluid forces other fluids into the stream. This process
is called entrainment. Entrainment devices have been in use since ancient times, particularly as pumps to raise
water small heights, as in draining swamps, fields, or other low-lying areas. Some other devices that use the concept
of entrainment are shown in Figure 12.5.

FIGURE 12.5 Examples of entrainment devices that use increased fluid speed to create low pressures, which then entrain one fluid into
another. (a) A Bunsen burner uses an adjustable gas nozzle, entraining air for proper combustion. (b) An atomizer uses a squeeze bulb to
create a jet of air that entrains drops of perfume. Paint sprayers and carburetors use very similar techniques to move their respective
liquids. (c) A common aspirator uses a high-speed stream of water to create a region of lower pressure. Aspirators may be used as suction
pumps in dental and surgical situations or for draining a flooded basement or producing a reduced pressure in a vessel. (d) The chimney of
a water heater is designed to entrain air into the pipe leading through the ceiling.

Wings and Sails
The airplane wing is a beautiful example of Bernoulli’s principle in action. Figure 12.6(a) shows the characteristic
shape of a wing. The wing is tilted upward at a small angle and the upper surface is longer, causing air to flow faster
over it. The pressure on top of the wing is therefore reduced, creating a net upward force or lift. (Wings can also gain
lift by pushing air downward, utilizing the conservation of momentum principle. The deflected air molecules result in
an upward force on the wing — Newton’s third law.) Sails also have the characteristic shape of a wing. (See Figure
12.6(b).) The pressure on the front side of the sail, , is lower than the pressure on the back of the sail, .
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This results in a forward force and even allows you to sail into the wind.

Velocity measurement
Figure 12.7 shows two devices that measure fluid velocity based on Bernoulli’s principle. The manometer in Figure
12.7(a) is connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the
oncoming fluid creates a dead spot having zero velocity ( ) in front of it, while fluid passing the other tube has
velocity . This means that Bernoulli’s principle as stated in becomes

FIGURE 12.6 (a) The Bernoulli principle helps explain lift generated by a wing. (b) Sails use the same technique to generate part of their
thrust.

Thus pressure over the second opening is reduced by , and so the fluid in the manometer rises by on the
side connected to the second opening, where

(Recall that the symbol means “proportional to.”) Solving for , we see that

Figure 12.7(b) shows a version of this device that is in common use for measuring various fluid velocities; such
devices are frequently used as air speed indicators in aircraft.

Making Connections: Take-Home Investigation with Two Strips of Paper

For a good illustration of Bernoulli’s principle, make two strips of paper, each about 15 cm long and 4 cm wide.
Hold the small end of one strip up to your lips and let it drape over your finger. Blow across the paper. What
happens? Now hold two strips of paper up to your lips, separated by your fingers. Blow between the strips. What
happens?
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FIGURE 12.7 Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are close together
and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2
has an opening on the side, and so the fluid has a speed across the opening; thus, pressure there drops. The difference in pressure at the
manometer is , and so is proportional to . (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot
tube.

12.3 The Most General Applications of Bernoulli’s Equation
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Calculate using Torricelli’s theorem.
• Calculate power in fluid flow.

Torricelli’s Theorem

Figure 12.8 shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if
resistance is negligible, the speed is just what it would be if the water fell a distance from the surface of the
reservoir; the water’s speed is independent of the size of the opening. Let us check this out. Bernoulli’s equation
must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the tube’s
outlet (point 2). Bernoulli’s equation as stated in previously is

Both and equal atmospheric pressure ( is atmospheric pressure because it is the pressure at the top of the
reservoir. must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot
have a pressure different from atmospheric pressure.) and subtract out of the equation, leaving

Solving this equation for , noting that the density cancels (because the fluid is incompressible), yields

We let ; the equation then becomes

where is the height dropped by the water. This is simply a kinematic equation for any object falling a distance
with negligible resistance. In fluids, this last equation is called Torricelli’s theorem. Note that the result is
independent of the velocity’s direction, just as we found when applying conservation of energy to falling objects.
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FIGURE 12.8 (a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin;
http://www.ImagesFromBulgaria.com) (b) In the absence of significant resistance, water flows from the reservoir with the same speed it
would have if it fell the distance without friction. This is an example of Torricelli’s theorem.

FIGURE 12.9 Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the
nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue
of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or
constant pressure. The next example is a more general application of Bernoulli’s equation in which pressure,
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velocity, and height all change. (See Figure 12.9.)

EXAMPLE 12.5

Calculating Pressure: A Fire Hose Nozzle
Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of
40.0 L/s starting at a gauge pressure of . The hose goes 10.0 m up a ladder to a nozzle having an
inside diameter of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle,
respectively. We must first find the speeds and . Since , we get

Similarly, we find

(This rather large speed is helpful in reaching the fire.) Now, taking to be zero, we solve Bernoulli’s equation for
:

Substituting known values yields

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure is
very close to atmospheric pressure, as it must because the water exits into the atmosphere without changes in its
conditions.

Power in Fluid Flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to
fluid flow, consider Bernoulli’s equation:

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if
we multiply energy per unit volume by flow rate (volume per unit time), we get units of power. That is,

. This means that if we multiply Bernoulli’s equation by flow rate , we get power. In equation
form, this is
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Each term has a clear physical meaning. For example, is the power supplied to a fluid, perhaps by a pump, to
give it its pressure . Similarly, is the power supplied to a fluid to give it its kinetic energy. And is the
power going to gravitational potential energy.

EXAMPLE 12.6

Calculating Power in a Moving Fluid
Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm
diameter coming from a hydrant with a pressure of . What power does the pump supply to the
water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have
the same diameters and are at the same height, the pump does not change the speed of the water nor its height,
and so the water’s kinetic energy and gravitational potential energy are unchanged. That means the pump only
supplies power to increase water pressure by (from to ).

Solution

As discussed above, the power associated with pressure is

Discussion

Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value
converts to about 50 hp.) The pump in this example increases only the water’s pressure. If a pump—such as the
heart—directly increases velocity and height as well as pressure, we would have to calculate all three terms to find
the power it supplies.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define laminar flow and turbulent flow.
• Explain what viscosity is.
• Calculate flow and resistance with Poiseuille’s law.
• Explain how pressure drops due to resistance.

Laminar Flow and Viscosity

When you pour yourself a glass of juice, the liquid flows freely and quickly. But when you pour syrup on your
pancakes, that liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself
and between the fluid and its surroundings. We call this property of fluids viscosity. Juice has low viscosity, whereas

12.39

Making Connections: Power

Power is defined as the rate of energy transferred, or . Fluid flow involves several types of power. Each type
of power is identified with a specific type of energy being expended or changed in form.
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syrup has high viscosity. In the previous sections we have considered ideal fluids with little or no viscosity. In this
section, we will investigate what factors, including viscosity, affect the rate of fluid flow.

The precise definition of viscosity is based on laminar, or nonturbulent, flow. Before we can define viscosity, then,
we need to define laminar flow and turbulent flow. Figure 12.10 shows both types of flow. Laminar flow is
characterized by the smooth flow of the fluid in layers that do not mix. Turbulent flow, or turbulence, is
characterized by eddies and swirls that mix layers of fluid together.

FIGURE 12.10 Smoke rises smoothly for a while and then begins to form swirls and eddies. The smooth flow is called laminar flow,
whereas the swirls and eddies typify turbulent flow. If you watch the smoke (being careful not to breathe on it), you will notice that it rises
more rapidly when flowing smoothly than after it becomes turbulent, implying that turbulence poses more resistance to flow. (credit:
Creativity103)

Figure 12.11 shows schematically how laminar and turbulent flow differ. Layers flow without mixing when flow is
laminar. When there is turbulence, the layers mix, and there are significant velocities in directions other than the
overall direction of flow. The lines that are shown in many illustrations are the paths followed by small volumes of
fluids. These are called streamlines. Streamlines are smooth and continuous when flow is laminar, but break up and
mix when flow is turbulent. Turbulence has two main causes. First, any obstruction or sharp corner, such as in a
faucet, creates turbulence by imparting velocities perpendicular to the flow. Second, high speeds cause turbulence.
The drag both between adjacent layers of fluid and between the fluid and its surroundings forms swirls and eddies,
if the speed is great enough. We shall concentrate on laminar flow for the remainder of this section, leaving certain
aspects of turbulence for later sections.

FIGURE 12.11 (a) Laminar flow occurs in layers without mixing. Notice that viscosity causes drag between layers as well as with the fixed
surface. (b) An obstruction in the vessel produces turbulence. Turbulent flow mixes the fluid. There is more interaction, greater heating, and
more resistance than in laminar flow.
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Figure 12.12 shows how viscosity is measured for a fluid. Two parallel plates have the specific fluid between them.
The bottom plate is held fixed, while the top plate is moved to the right, dragging fluid with it. The layer (or lamina)
of fluid in contact with either plate does not move relative to the plate, and so the top layer moves at while the
bottom layer remains at rest. Each successive layer from the top down exerts a force on the one below it, trying to
drag it along, producing a continuous variation in speed from to 0 as shown. Care is taken to insure that the flow is
laminar; that is, the layers do not mix. The motion in Figure 12.12 is like a continuous shearing motion. Fluids have
zero shear strength, but the rate at which they are sheared is related to the same geometrical factors and as is
shear deformation for solids.

FIGURE 12.12 The graphic shows laminar flow of fluid between two plates of area . The bottom plate is fixed. When the top plate is
pushed to the right, it drags the fluid along with it.

A force is required to keep the top plate in Figure 12.12 moving at a constant velocity , and experiments have
shown that this force depends on four factors. First, is directly proportional to (until the speed is so high that
turbulence occurs—then a much larger force is needed, and it has a more complicated dependence on ). Second,
is proportional to the area of the plate. This relationship seems reasonable, since is directly proportional to the
amount of fluid being moved. Third, is inversely proportional to the distance between the plates . This
relationship is also reasonable; is like a lever arm, and the greater the lever arm, the less force that is needed.
Fourth, is directly proportional to the coefficient of viscosity, . The greater the viscosity, the greater the force
required. These dependencies are combined into the equation

which gives us a working definition of fluid viscosity . Solving for gives

which defines viscosity in terms of how it is measured. The SI unit of viscosity is
. Table 12.1 lists the coefficients of viscosity for various fluids.

Viscosity varies from one fluid to another by several orders of magnitude. As you might expect, the viscosities of
gases are much less than those of liquids, and these viscosities are often temperature dependent. The viscosity of
blood can be reduced by aspirin consumption, allowing it to flow more easily around the body. (When used over the
long term in low doses, aspirin can help prevent heart attacks, and reduce the risk of blood clotting.)

Laminar Flow Confined to Tubes—Poiseuille’s Law

What causes flow? The answer, not surprisingly, is pressure difference. In fact, there is a very simple relationship
between horizontal flow and pressure. Flow rate is in the direction from high to low pressure. The greater the
pressure differential between two points, the greater the flow rate. This relationship can be stated as

Making Connections: Take-Home Experiment: Go Down to the River

Try dropping simultaneously two sticks into a flowing river, one near the edge of the river and one near the
middle. Which one travels faster? Why?
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where and are the pressures at two points, such as at either end of a tube, and is the resistance to flow.
The resistance includes everything, except pressure, that affects flow rate. For example, is greater for a long
tube than for a short one. The greater the viscosity of a fluid, the greater the value of . Turbulence greatly
increases , whereas increasing the diameter of a tube decreases .

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a
tube to viscous flow, as in Figure 12.13, we see that for a viscous fluid, speed is greatest at midstream because of
drag at the boundaries. We can see the effect of viscosity in a Bunsen burner flame, even though the viscosity of
natural gas is small.

The resistance to laminar flow of an incompressible fluid having viscosity through a horizontal tube of uniform
radius and length , such as the one in Figure 12.14, is given by

This equation is called Poiseuille’s law for resistance after the French scientist J. L. Poiseuille (1799–1869), who
derived it in an attempt to understand the flow of blood, an often turbulent fluid.

FIGURE 12.13 (a) If fluid flow in a tube has negligible resistance, the speed is the same all across the tube. (b) When a viscous fluid flows
through a tube, its speed at the walls is zero, increasing steadily to its maximum at the center of the tube. (c) The shape of the Bunsen
burner flame is due to the velocity profile across the tube. (credit: Jason Woodhead)

Let us examine Poiseuille’s expression for to see if it makes good intuitive sense. We see that resistance is directly
proportional to both fluid viscosity and the length of a tube. After all, both of these directly affect the amount of
friction encountered—the greater either is, the greater the resistance and the smaller the flow. The radius of a tube
affects the resistance, which again makes sense, because the greater the radius, the greater the flow (all other
factors remaining the same). But it is surprising that is raised to the fourth power in Poiseuille’s law. This exponent
means that any change in the radius of a tube has a very large effect on resistance. For example, doubling the radius
of a tube decreases resistance by a factor of .

Taken together, and give the following expression for flow rate:

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or
simply Poiseuille’s law.
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EXAMPLE 12.7

Using Flow Rate: Plaque Deposits Reduce Blood Flow
Suppose the flow rate of blood in a coronary artery has been reduced to half its normal value by plaque deposits. By
what factor has the radius of the artery been reduced, assuming no turbulence occurs?

Strategy

Assuming laminar flow, Poiseuille’s law states that

We need to compare the artery radius before and after the flow rate reduction.

Solution

With a constant pressure difference assumed and the same length and viscosity, along the artery we have

So, given that , we find that .

Therefore, , a decrease in the artery radius of 16%.

Discussion

This decrease in radius is surprisingly small for this situation. To restore the blood flow in spite of this buildup would
require an increase in the pressure difference of a factor of two, with subsequent strain on the heart.

Fluid Temperature (ºC) Viscosity

Gases

Air

0 0.0171

20 0.0181

40 0.0190

100 0.0218

Ammonia 20 0.00974

Carbon dioxide 20 0.0147

Helium 20 0.0196

Hydrogen 0 0.0090

Mercury 20 0.0450

Oxygen 20 0.0203

TABLE 12.1 Coefficients of Viscosity of Various Fluids
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Fluid Temperature (ºC) Viscosity

Steam 100 0.0130

Liquids

Water

0 1.792

20 1.002

37 0.6947

40 0.653

100 0.282

Whole blood1
20 3.015

37 2.084

Blood plasma2
20 1.810

37 1.257

Ethyl alcohol 20 1.20

Methanol 20 0.584

Oil (heavy machine) 20 660

Oil (motor, SAE 10) 30 200

Oil (olive) 20 138

Glycerin 20 1500

Honey 20 2000–10000

Maple Syrup 20 2000–3000

Milk 20 3.0

Oil (Corn) 20 65

TABLE 12.1 Coefficients of Viscosity of Various Fluids

The circulatory system provides many examples of Poiseuille’s law in action—with blood flow regulated by changes
in vessel size and blood pressure. Blood vessels are not rigid but elastic. Adjustments to blood flow are primarily
made by varying the size of the vessels, since the resistance is so sensitive to the radius. During vigorous exercise,
blood vessels are selectively dilated to important muscles and organs and blood pressure increases. This creates
both greater overall blood flow and increased flow to specific areas. Conversely, decreases in vessel radii, perhaps

1 The ratios of the viscosities of blood to water are nearly constant between 0°C and 37°C.
2 See note on Whole Blood.
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from plaques in the arteries, can greatly reduce blood flow. If a vessel’s radius is reduced by only 5% (to 0.95 of its
original value), the flow rate is reduced to about of its original value. A 19% decrease in flow is
caused by a 5% decrease in radius. The body may compensate by increasing blood pressure by 19%, but this
presents hazards to the heart and any vessel that has weakened walls. Another example comes from automobile
engine oil. If you have a car with an oil pressure gauge, you may notice that oil pressure is high when the engine is
cold. Motor oil has greater viscosity when cold than when warm, and so pressure must be greater to pump the same
amount of cold oil.

FIGURE 12.14 Poiseuille’s law applies to laminar flow of an incompressible fluid of viscosity through a tube of length and radius . The
direction of flow is from greater to lower pressure. Flow rate is directly proportional to the pressure difference , and inversely
proportional to the length of the tube and viscosity of the fluid. Flow rate increases with , the fourth power of the radius.

EXAMPLE 12.8

What Pressure Produces This Flow Rate?
An intravenous (IV) system is supplying saline solution to a patient at the rate of through a needle of
radius 0.150 mm and length 2.50 cm. What pressure is needed at the entrance of the needle to cause this flow,
assuming the viscosity of the saline solution to be the same as that of water? The gauge pressure of the blood in the
patient’s vein is 8.00 mm Hg. (Assume that the temperature is .)

Strategy

Assuming laminar flow, Poiseuille’s law applies. This is given by

where is the pressure at the entrance of the needle and is the pressure in the vein. The only unknown is .

Solution

Solving for yields

is given as 8.00 mm Hg, which converts to . Substituting this and the other known values
yields

Discussion

This pressure could be supplied by an IV bottle with the surface of the saline solution 1.61 m above the entrance to
the needle (this is left for you to solve in this chapter’s Problems and Exercises), assuming that there is negligible
pressure drop in the tubing leading to the needle.
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Flow and Resistance as Causes of Pressure Drops

You may have noticed that water pressure in your home might be lower than normal on hot summer days when
there is more use. This pressure drop occurs in the water main before it reaches your home. Let us consider flow
through the water main as illustrated in Figure 12.15. We can understand why the pressure to the home drops
during times of heavy use by rearranging

to

where, in this case, is the pressure at the water works and is the resistance of the water main. During times of
heavy use, the flow rate is large. This means that must also be large. Thus must decrease. It is
correct to think of flow and resistance as causing the pressure to drop from to . is valid for
both laminar and turbulent flows.

FIGURE 12.15 During times of heavy use, there is a significant pressure drop in a water main, and supplied to users is significantly less
than created at the water works. If the flow is very small, then the pressure drop is negligible, and .

We can use to analyze pressure drops occurring in more complex systems in which the tube radius
is not the same everywhere. Resistance will be much greater in narrow places, such as an obstructed coronary
artery. For a given flow rate , the pressure drop will be greatest where the tube is most narrow. This is how water
faucets control flow. Additionally, is greatly increased by turbulence, and a constriction that creates turbulence
greatly reduces the pressure downstream. Plaque in an artery reduces pressure and hence flow, both by its
resistance and by the turbulence it creates.

Figure 12.16 is a schematic of the human circulatory system, showing average blood pressures in its major parts for
an adult at rest. Pressure created by the heart’s two pumps, the right and left ventricles, is reduced by the
resistance of the blood vessels as the blood flows through them. The left ventricle increases arterial blood pressure
that drives the flow of blood through all parts of the body except the lungs. The right ventricle receives the lower
pressure blood from two major veins and pumps it through the lungs for gas exchange with atmospheric gases – the
disposal of carbon dioxide from the blood and the replenishment of oxygen. Only one major organ is shown
schematically, with typical branching of arteries to ever smaller vessels, the smallest of which are the capillaries,
and rejoining of small veins into larger ones. Similar branching takes place in a variety of organs in the body, and the
circulatory system has considerable flexibility in flow regulation to these organs by the dilation and constriction of
the arteries leading to them and the capillaries within them. The sensitivity of flow to tube radius makes this
flexibility possible over a large range of flow rates.
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FIGURE 12.16 Schematic of the circulatory system. Pressure difference is created by the two pumps in the heart and is reduced by
resistance in the vessels. Branching of vessels into capillaries allows blood to reach individual cells and exchange substances, such as
oxygen and waste products, with them. The system has an impressive ability to regulate flow to individual organs, accomplished largely by
varying vessel diameters.

Each branching of larger vessels into smaller vessels increases the total cross-sectional area of the tubes through
which the blood flows. For example, an artery with a cross section of may branch into 20 smaller arteries,
each with cross sections of , with a total of . In that manner, the resistance of the branchings is
reduced so that pressure is not entirely lost. Moreover, because and increases through branching, the
average velocity of the blood in the smaller vessels is reduced. The blood velocity in the aorta ( ) is
about 25 cm/s, while in the capillaries ( in diameter) the velocity is about 1 mm/s. This reduced velocity
allows the blood to exchange substances with the cells in the capillaries and alveoli in particular.

12.5 The Onset of Turbulence
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Calculate Reynolds number.
• Use the Reynolds number for a system to determine whether it is laminar or turbulent.

Sometimes we can predict if flow will be laminar or turbulent. We know that flow in a very smooth tube or around a
smooth, streamlined object will be laminar at low velocity. We also know that at high velocity, even flow in a smooth
tube or around a smooth object will experience turbulence. In between, it is more difficult to predict. In fact, at
intermediate velocities, flow may oscillate back and forth indefinitely between laminar and turbulent.

An occlusion, or narrowing, of an artery, such as shown in Figure 12.17, is likely to cause turbulence because of the
irregularity of the blockage, as well as the complexity of blood as a fluid. Turbulence in the circulatory system is
noisy and can sometimes be detected with a stethoscope, such as when measuring diastolic pressure in the upper
arm’s partially collapsed brachial artery. These turbulent sounds, at the onset of blood flow when the cuff pressure
becomes sufficiently small, are called Korotkoff sounds. Aneurysms, or ballooning of arteries, create significant
turbulence and can sometimes be detected with a stethoscope. Heart murmurs, consistent with their name, are
sounds produced by turbulent flow around damaged and insufficiently closed heart valves. Ultrasound can also be
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used to detect turbulence as a medical indicator in a process analogous to Doppler-shift radar used to detect
storms.

FIGURE 12.17 Flow is laminar in the large part of this blood vessel and turbulent in the part narrowed by plaque, where velocity is high. In
the transition region, the flow can oscillate chaotically between laminar and turbulent flow.

An indicator called the Reynolds number can reveal whether flow is laminar or turbulent. For flow in a tube of
uniform diameter, the Reynolds number is defined as

where is the fluid density, its speed, its viscosity, and the tube radius. The Reynolds number is a unitless
quantity. Experiments have revealed that is related to the onset of turbulence. For below about 2000, flow
is laminar. For above about 3000, flow is turbulent. For values of between about 2000 and 3000, flow is
unstable—that is, it can be laminar, but small obstructions and surface roughness can make it turbulent, and it may
oscillate randomly between being laminar and turbulent. The blood flow through most of the body is a quiet, laminar
flow. The exception is in the aorta, where the speed of the blood flow rises above a critical value of 35 m/s and
becomes turbulent.

EXAMPLE 12.9

Is This Flow Laminar or Turbulent?
Calculate the Reynolds number for flow in the needle considered in Example 12.8 to verify the assumption that the
flow is laminar. Assume that the density of the saline solution is .

Strategy

We have all of the information needed, except the fluid speed , which can be calculated from
(verification of this is in this chapter’s Problems and Exercises).

Solution

Entering the known values into gives

Discussion

Since is well below 2000, the flow should indeed be laminar.
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The topic of chaos has become quite popular over the last few decades. A system is defined to be chaotic when its
behavior is so sensitive to some factor that it is extremely difficult to predict. The field of chaos is the study of
chaotic behavior. A good example of chaotic behavior is the flow of a fluid with a Reynolds number between 2000
and 3000. Whether or not the flow is turbulent is difficult, but not impossible, to predict—the difficulty lies in the
extremely sensitive dependence on factors like roughness and obstructions on the nature of the flow. A tiny
variation in one factor has an exaggerated (or nonlinear) effect on the flow. Phenomena as disparate as turbulence,
the orbit of Pluto, and the onset of irregular heartbeats are chaotic and can be analyzed with similar techniques.

12.6 Motion of an Object in a Viscous Fluid
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Calculate the Reynolds number for an object moving through a fluid.
• Explain whether the Reynolds number indicates laminar or turbulent flow.
• Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when
you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s
wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two.
Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of
the Reynolds number , defined for an object moving in a fluid to be

where is a characteristic length of the object (a sphere’s diameter, for example), the fluid density, its viscosity,
and the object’s speed in the fluid. If is less than about 1, flow around the object can be laminar, particularly if
the object has a smooth shape. The transition to turbulent flow occurs for between 1 and about 10, depending
on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with
some laminar flow over its surface. For an between 10 and , the flow may be either laminar or turbulent and
may oscillate between the two. For greater than about , the flow is entirely turbulent, even at the surface of
the object. (See Figure 12.18.) Laminar flow occurs mostly when the objects in the fluid are small, such as
raindrops, pollen, and blood cells in plasma.

EXAMPLE 12.10

Does a Ball Have a Turbulent Wake?
Calculate the Reynolds number for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use to calculate , since all values in it are either given or can be found in tables of density
and viscosity.

Solution

Substituting values into the equation for yields

Take-Home Experiment: Inhalation

Under the conditions of normal activity, an adult inhales about 1 L of air during each inhalation. With the aid of a
watch, determine the time for one of your own inhalations by timing several breaths and dividing the total length
by the number of breaths. Calculate the average flow rate of air traveling through the trachea during each
inhalation.
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Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create
significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results
in such situations.

One of the consequences of viscosity is a resistance force called viscous drag that is exerted on a moving
object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown
that for laminar flow ( less than about one) viscous drag is proportional to speed, whereas for between
about 10 and , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is
pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists
take turns being the leader in the pack for this reason.) For greater than , drag increases dramatically and
behaves with greater complexity. For laminar flow around a sphere, is proportional to fluid viscosity , the
object’s characteristic size , and its speed . All of which makes sense—the more viscous the fluid and the larger
the object, the more drag we expect. Recall Stoke’s law . For the special case of a small sphere of radius

moving slowly in a fluid of viscosity , the drag force is given by

FIGURE 12.18 (a) Motion of this sphere to the right is equivalent to fluid flow to the left. Here the flow is laminar with less than 1. There
is a force, called viscous drag , to the left on the ball due to the fluid’s viscosity. (b) At a higher speed, the flow becomes partially
turbulent, creating a wake starting where the flow lines separate from the surface. Pressure in the wake is less than in front of the sphere,
because fluid speed is less, creating a net force to the left that is significantly greater than for laminar flow. Here is greater than 10.
(c) At much higher speeds, where is greater than , flow becomes turbulent everywhere on the surface and behind the sphere. Drag
increases dramatically.

An interesting consequence of the increase in with speed is that an object falling through a fluid will not
continue to accelerate indefinitely (as it would if we neglect air resistance, for example). Instead, viscous drag
increases, slowing acceleration, until a critical speed, called the terminal speed, is reached and the acceleration of
the object becomes zero. Once this happens, the object continues to fall at constant speed (the terminal speed).
This is the case for particles of sand falling in the ocean, cells falling in a centrifuge, and sky divers falling through
the air. Figure 12.19 shows some of the factors that affect terminal speed. There is a viscous drag on the object that
depends on the viscosity of the fluid and the size of the object. But there is also a buoyant force that depends on the
density of the object relative to the fluid. Terminal speed will be greatest for low-viscosity fluids and objects with
high densities and small sizes. Thus a skydiver falls more slowly with outspread limbs than when they are in a pike
position—head first with hands at their side and legs together.
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Take-Home Experiment: Don’t Lose Your Marbles

By measuring the terminal speed of a slowly moving sphere in a viscous fluid, one can find the viscosity of that
fluid (at that temperature). It can be difficult to find small ball bearings around the house, but a small marble will
do. Gather two or three fluids (syrup, motor oil, honey, olive oil, etc.) and a thick, tall clear glass or vase. Drop the
marble into the center of the fluid and time its fall (after letting it drop a little to reach its terminal speed).
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Knowledge of terminal speed is useful for estimating sedimentation rates of small particles. We know from watching
mud settle out of dirty water that sedimentation is usually a slow process. Centrifuges are used to speed
sedimentation by creating accelerated frames in which gravitational acceleration is replaced by centripetal
acceleration, which can be much greater, increasing the terminal speed.

FIGURE 12.19 There are three forces acting on an object falling through a viscous fluid: its weight , the viscous drag , and the buoyant
force .

12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related
Processes
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Define diffusion, osmosis, dialysis, and active transport.
• Calculate diffusion rates.

Diffusion

There is something fishy about the ice cube from your freezer—how did it pick up those food odors? How does
soaking a sprained ankle in Epsom salt reduce swelling? The answer to these questions are related to atomic and
molecular transport phenomena—another mode of fluid motion. Atoms and molecules are in constant motion at any
temperature. In fluids they move about randomly even in the absence of macroscopic flow. This motion is called a
random walk and is illustrated in Figure 12.20. Diffusion is the movement of substances due to random thermal
molecular motion. Fluids, like fish fumes or odors entering ice cubes, can even diffuse through solids.

Diffusion is a slow process over macroscopic distances. The densities of common materials are great enough that
molecules cannot travel very far before having a collision that can scatter them in any direction, including straight
backward. It can be shown that the average distance that a molecule travels is proportional to the square root
of time:

where stands for the root-mean-square distance and is the statistical average for the process. The quantity
is the diffusion constant for the particular molecule in a specific medium. Table 12.2 lists representative values of
for various substances, in units of .

Compare your values for the terminal speed and see if they are inversely proportional to the viscosities as listed
in Table 12.1. Does it make a difference if the marble is dropped near the side of the glass?
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FIGURE 12.20 The random thermal motion of a molecule in a fluid in time . This type of motion is called a random walk.

Diffusing molecule Medium D (m2/s)

Hydrogen Air

Oxygen Air

Oxygen Water

Glucose Water

Hemoglobin Water

DNA Water

TABLE 12.2 Diffusion Constants for Various
Molecules3

Note that gets progressively smaller for more massive molecules. This decrease is because the average
molecular speed at a given temperature is inversely proportional to molecular mass. Thus the more massive
molecules diffuse more slowly. Another interesting point is that for oxygen in air is much greater than for
oxygen in water. In water, an oxygen molecule makes many more collisions in its random walk and is slowed
considerably. In water, an oxygen molecule moves only about in 1 s. (Each molecule actually collides about

times per second!). Finally, note that diffusion constants increase with temperature, because average
molecular speed increases with temperature. This is because the average kinetic energy of molecules, , is
proportional to absolute temperature.

EXAMPLE 12.11

Calculating Diffusion: How Long Does Glucose Diffusion Take?
Calculate the average time it takes a glucose molecule to move 1.0 cm in water.

3 At 20°C and 1 atm
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Strategy

We can use , the expression for the average distance moved in time , and solve it for . All other
quantities are known.

Solution

Solving for and substituting known values yields

Discussion

This is a remarkably long time for glucose to move a mere centimeter! For this reason, we stir sugar into water rather
than waiting for it to diffuse.

Because diffusion is typically very slow, its most important effects occur over small distances. For example, the
cornea of the eye gets most of its oxygen by diffusion through the thin tear layer covering it.

The Rate and Direction of Diffusion

If you very carefully place a drop of food coloring in a still glass of water, it will slowly diffuse into the colorless
surroundings until its concentration is the same everywhere. This type of diffusion is called free diffusion, because
there are no barriers inhibiting it. Let us examine its direction and rate. Molecular motion is random in direction, and
so simple chance dictates that more molecules will move out of a region of high concentration than into it. The net
rate of diffusion is higher initially than after the process is partially completed. (See Figure 12.21.)

FIGURE 12.21 Diffusion proceeds from a region of higher concentration to a lower one. The net rate of movement is proportional to the
difference in concentration.

The net rate of diffusion is proportional to the concentration difference. Many more molecules will leave a region of
high concentration than will enter it from a region of low concentration. In fact, if the concentrations were the same,
there would be no net movement. The net rate of diffusion is also proportional to the diffusion constant , which is
determined experimentally. The farther a molecule can diffuse in a given time, the more likely it is to leave the
region of high concentration. Many of the factors that affect the rate are hidden in the diffusion constant . For
example, temperature and cohesive and adhesive forces all affect values of .

Diffusion is the dominant mechanism by which the exchange of nutrients and waste products occur between the
blood and tissue, and between air and blood in the lungs. In the evolutionary process, as organisms became larger,
they needed quicker methods of transportation than net diffusion, because of the larger distances involved in the
transport, leading to the development of circulatory systems. Less sophisticated, single-celled organisms still rely
totally on diffusion for the removal of waste products and the uptake of nutrients.
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Osmosis and Dialysis—Diffusion across Membranes

Some of the most interesting examples of diffusion occur through barriers that affect the rates of diffusion. For
example, when you soak a swollen ankle in Epsom salt, water diffuses through your skin. Many substances regularly
move through cell membranes; oxygen moves in, carbon dioxide moves out, nutrients go in, and wastes go out, for
example. Because membranes are thin structures (typically to m across) diffusion rates
through them can be high. Diffusion through membranes is an important method of transport.

Membranes are generally selectively permeable, or semipermeable. (See Figure 12.22.) One type of
semipermeable membrane has small pores that allow only small molecules to pass through. In other types of
membranes, the molecules may actually dissolve in the membrane or react with molecules in the membrane while
moving across. Membrane function, in fact, is the subject of much current research, involving not only physiology
but also chemistry and physics.

FIGURE 12.22 (a) A semipermeable membrane with small pores that allow only small molecules to pass through. (b) Certain molecules
dissolve in this membrane and diffuse across it.

Osmosis is the transport of water through a semipermeable membrane from a region of high concentration to a
region of low concentration. Osmosis is driven by the imbalance in water concentration. For example, water is more
concentrated in your body than in Epsom salt. When you soak a swollen ankle in Epsom salt, the water moves out of
your body into the lower-concentration region in the salt. Similarly, dialysis is the transport of any other molecule
through a semipermeable membrane due to its concentration difference. Both osmosis and dialysis are used by the
kidneys to cleanse the blood.

Osmosis can create a substantial pressure. Consider what happens if osmosis continues for some time, as
illustrated in Figure 12.23. Water moves by osmosis from the left into the region on the right, where it is less
concentrated, causing the solution on the right to rise. This movement will continue until the pressure created
by the extra height of fluid on the right is large enough to stop further osmosis. This pressure is called a back
pressure. The back pressure that stops osmosis is also called the relative osmotic pressure if neither solution
is pure water, and it is called the osmotic pressure if one solution is pure water. Osmotic pressure can be large,
depending on the size of the concentration difference. For example, if pure water and sea water are separated by a
semipermeable membrane that passes no salt, osmotic pressure will be 25.9 atm. This value means that water will
diffuse through the membrane until the salt water surface rises 268 m above the pure-water surface! One example
of pressure created by osmosis is turgor in plants (many wilt when too dry). Turgor describes the condition of a plant
in which the fluid in a cell exerts a pressure against the cell wall. This pressure gives the plant support. Dialysis can
similarly cause substantial pressures.
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FIGURE 12.23 (a) Two sugar-water solutions of different concentrations, separated by a semipermeable membrane that passes water but
not sugar. Osmosis will be to the right, since water is less concentrated there. (b) The fluid level rises until the back pressure equals the
relative osmotic pressure; then, the net transfer of water is zero.

Reverse osmosis and reverse dialysis (also called filtration) are processes that occur when back pressure is
sufficient to reverse the normal direction of substances through membranes. Back pressure can be created naturally
as on the right side of Figure 12.23. (A piston can also create this pressure.) Reverse osmosis can be used to
desalinate water by simply forcing it through a membrane that will not pass salt. Similarly, reverse dialysis can be
used to filter out any substance that a given membrane will not pass.

One further example of the movement of substances through membranes deserves mention. We sometimes find
that substances pass in the direction opposite to what we expect. Cypress tree roots, for example, extract pure
water from salt water, although osmosis would move it in the opposite direction. This is not reverse osmosis,
because there is no back pressure to cause it. What is happening is called active transport, a process in which a
living membrane expends energy to move substances across it. Many living membranes move water and other
substances by active transport. The kidneys, for example, not only use osmosis and dialysis—they also employ
significant active transport to move substances into and out of blood. In fact, it is estimated that at least 25% of the
body’s energy is expended on active transport of substances at the cellular level. The study of active transport
carries us into the realms of microbiology, biophysics, and biochemistry and it is a fascinating application of the laws
of nature to living structures.
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Glossary
active transport the process in which a living

membrane expends energy to move substances
across

Bernoulli’s equation the equation resulting from
applying conservation of energy to an
incompressible frictionless fluid: P + 1/2pv2 + pgh =
constant , through the fluid

Bernoulli’s principle Bernoulli’s equation applied at
constant depth: P1 + 1/2pv1

2 = P2 + 1/2pv2
2

dialysis the transport of any molecule other than
water through a semipermeable membrane from a
region of high concentration to one of low
concentration

diffusion the movement of substances due to
random thermal molecular motion

flow rate abbreviated Q, it is the volume V that flows
past a particular point during a time t, or Q = V/t

fluid dynamics the physics of fluids in motion
laminar a type of fluid flow in which layers do not mix
liter a unit of volume, equal to 10−3 m3

osmosis the transport of water through a
semipermeable membrane from a region of high
concentration to one of low concentration

osmotic pressure the back pressure which stops the
osmotic process if one solution is pure water

Poiseuille’s law the rate of laminar flow of an
incompressible fluid in a tube: Q = (P2 − P1)πr4/8ηl

Poiseuille’s law for resistance the resistance to
laminar flow of an incompressible fluid in a tube: R =
8ηl/πr4

relative osmotic pressure the back pressure which
stops the osmotic process if neither solution is pure
water

reverse dialysis the process that occurs when back
pressure is sufficient to reverse the normal direction
of dialysis through membranes

reverse osmosis the process that occurs when back
pressure is sufficient to reverse the normal direction
of osmosis through membranes

Reynolds number a dimensionless parameter that
can reveal whether a particular flow is laminar or
turbulent

semipermeable a type of membrane that allows only
certain small molecules to pass through

terminal speed the speed at which the viscous drag
of an object falling in a viscous fluid is equal to the
other forces acting on the object (such as gravity),
so that the acceleration of the object is zero

turbulence fluid flow in which layers mix together via
eddies and swirls

viscosity the friction in a fluid, defined in terms of the
friction between layers

viscous drag a resistance force exerted on a moving
object, with a nontrivial dependence on velocity

Section Summary
12.1 Flow Rate and Its Relation to Velocity

• Flow rate is defined to be the volume flowing
past a point in time , or where is
volume and is time.

• The SI unit of volume is .
• Another common unit is the liter (L), which is

.
• Flow rate and velocity are related by

where is the cross-sectional area of the flow and
is its average velocity.

• For incompressible fluids, flow rate at various
points is constant. That is,

12.2 Bernoulli’s Equation

• Bernoulli’s equation states that the sum on each
side of the following equation is constant, or the
same at any two points in an incompressible
frictionless fluid:

• Bernoulli’s principle is Bernoulli’s equation applied
to situations in which depth is constant. The terms
involving depth (or height h ) subtract out, yielding

• Bernoulli’s principle has many applications,
including entrainment, wings and sails, and
velocity measurement.

12.3 The Most General Applications of
Bernoulli’s Equation

• Power in fluid flow is given by the equation
where the first

term is power associated with pressure, the
second is power associated with velocity, and the
third is power associated with height.

12.4 Viscosity and Laminar Flow;
Poiseuille’s Law

• Laminar flow is characterized by smooth flow of
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the fluid in layers that do not mix.
• Turbulence is characterized by eddies and swirls

that mix layers of fluid together.
• Fluid viscosity is due to friction within a fluid.

Representative values are given in Table 12.1.
Viscosity has units of or .

• Flow is proportional to pressure difference and
inversely proportional to resistance:

• For laminar flow in a tube, Poiseuille’s law for
resistance states that

• Poiseuille’s law for flow in a tube is

• The pressure drop caused by flow and resistance
is given by

12.5 The Onset of Turbulence

• The Reynolds number can reveal whether flow
is laminar or turbulent. It is

• For below about 2000, flow is laminar. For
above about 3000, flow is turbulent. For values of

between 2000 and 3000, it may be either or
both.

12.6 Motion of an Object in a Viscous Fluid

• When an object moves in a fluid, there is a
different form of the Reynolds number

which indicates
whether flow is laminar or turbulent.

• For less than about one, flow is laminar.
• For greater than , flow is entirely

turbulent.

12.7 Molecular Transport Phenomena:
Diffusion, Osmosis, and Related Processes

• Diffusion is the movement of substances due to
random thermal molecular motion.

• The average distance a molecule travels by
diffusion in a given amount of time is given by

where is the diffusion constant, representative
values of which are found in Table 12.2.

• Osmosis is the transport of water through a
semipermeable membrane from a region of high
concentration to a region of low concentration.

• Dialysis is the transport of any other molecule
through a semipermeable membrane due to its
concentration difference.

• Both processes can be reversed by back pressure.
• Active transport is a process in which a living

membrane expends energy to move substances
across it.

Conceptual Questions
12.1 Flow Rate and Its Relation to Velocity

1. What is the difference between flow rate and fluid
velocity? How are they related?

2. Many figures in the text show streamlines. Explain
why fluid velocity is greatest where streamlines are
closest together. (Hint: Consider the relationship
between fluid velocity and the cross-sectional area
through which it flows.)

3. Identify some substances that are incompressible
and some that are not.

12.2 Bernoulli’s Equation

4. You can squirt water a considerably greater
distance by placing your thumb over the end of a
garden hose and then releasing, than by leaving it
completely uncovered. Explain how this works.

5. Water is shot nearly vertically upward in a
decorative fountain and the stream is observed to
broaden as it rises. Conversely, a stream of water
falling straight down from a faucet narrows. Explain
why, and discuss whether surface tension enhances
or reduces the effect in each case.

6. Look back to Figure 12.4. Answer the following two
questions. Why is less than atmospheric? Why is

greater than ?
7. Give an example of entrainment not mentioned in

the text.
8. Many entrainment devices have a constriction,

called a Venturi, such as shown in Figure 12.24.
How does this bolster entrainment?
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FIGURE 12.24 A tube with a narrow segment designed to enhance
entrainment is called a Venturi. These are very commonly used in
carburetors and aspirators.

9. Some chimney pipes have a T-shape, with a
crosspiece on top that helps draw up gases
whenever there is even a slight breeze. Explain how
this works in terms of Bernoulli’s principle.

10. Is there a limit to the height to which an
entrainment device can raise a fluid? Explain your
answer.

11. Why is it preferable for airplanes to take off into
the wind rather than with the wind?

12. Roofs are sometimes pushed off vertically during a
tropical cyclone, and buildings sometimes explode
outward when hit by a tornado. Use Bernoulli’s
principle to explain these phenomena.

13. Why does a sailboat need a keel?
14. It is dangerous to stand close to railroad tracks

when a rapidly moving commuter train passes.
Explain why atmospheric pressure would push
you toward the moving train.

15. Water pressure inside a hose nozzle can be less
than atmospheric pressure due to the Bernoulli
effect. Explain in terms of energy how the water
can emerge from the nozzle against the opposing
atmospheric pressure.

16. A perfume bottle or atomizer sprays a fluid that is
in the bottle. (Figure 12.25.) How does the fluid
rise up in the vertical tube in the bottle?

FIGURE 12.25 Atomizer: perfume bottle with tube to carry
perfume up through the bottle. (credit: Antonia Foy, Flickr)

17. If you lower the window on a car while moving, an
empty plastic bag can sometimes fly out the
window. Why does this happen?

12.3 The Most General Applications of
Bernoulli’s Equation

18. Based on Bernoulli’s equation, what are three
forms of energy in a fluid? (Note that these forms
are conservative, unlike heat transfer and other
dissipative forms not included in Bernoulli’s
equation.)

19. Water that has emerged from a hose into the
atmosphere has a gauge pressure of zero. Why?
When you put your hand in front of the emerging
stream you feel a force, yet the water’s gauge
pressure is zero. Explain where the force comes
from in terms of energy.
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20. The old rubber boot shown in Figure 12.26 has two
leaks. To what maximum height can the water squirt
from Leak 1? How does the velocity of water emerging
from Leak 2 differ from that of leak 1? Explain your
responses in terms of energy.

FIGURE 12.26 Water emerges from two leaks in an old boot.

21. Water pressure inside a hose nozzle can be less
than atmospheric pressure due to the Bernoulli
effect. Explain in terms of energy how the water
can emerge from the nozzle against the opposing
atmospheric pressure.

12.4 Viscosity and Laminar Flow;
Poiseuille’s Law

22. Explain why the viscosity of a liquid decreases
with temperature—that is, how might increased
temperature reduce the effects of cohesive forces
in a liquid? Also explain why the viscosity of a gas
increases with temperature—that is, how does
increased gas temperature create more collisions
between atoms and molecules?

23. When paddling a canoe upstream, it is wisest to
travel as near to the shore as possible. When
canoeing downstream, it may be best to stay near
the middle. Explain why.

24. Why does flow decrease in your shower when
someone flushes the toilet?

25. Plumbing usually includes air-filled tubes near water
faucets, as shown in Figure 12.27. Explain why they are
needed and how they work.

FIGURE 12.27 The vertical tube near the water tap remains full of
air and serves a useful purpose.

12.5 The Onset of Turbulence

26. Doppler ultrasound can be used to measure the
speed of blood in the body. If there is a partial
constriction of an artery, where would you expect
blood speed to be greatest, at or nearby the
constriction? What are the two distinct causes of
higher resistance in the constriction?

27. Sink drains often have a device such as that shown in
Figure 12.28 to help speed the flow of water. How does
this work?

FIGURE 12.28 You will find devices such as this in many drains.
They significantly increase flow rate.

28. Some ceiling fans have decorative wicker reeds on
their blades. Discuss whether these fans are as
quiet and efficient as those with smooth blades.

12.6 Motion of an Object in a Viscous Fluid

29. What direction will a helium balloon move inside a
car that is slowing down—toward the front or
back? Explain your answer.
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30. Will identical raindrops fall more rapidly in air
or air, neglecting any differences in air
density? Explain your answer.

31. If you took two marbles of different sizes, what
would you expect to observe about the relative
magnitudes of their terminal velocities?

12.7 Molecular Transport Phenomena:
Diffusion, Osmosis, and Related Processes

32. Why would you expect the rate of diffusion to
increase with temperature? Can you give an
example, such as the fact that you can dissolve
sugar more rapidly in hot water?

33. How are osmosis and dialysis similar? How do
they differ?

Problems & Exercises
12.1 Flow Rate and Its Relation to Velocity

1. What is the average flow rate in of gasoline
to the engine of a car traveling at 100 km/h if it
averages 10.0 km/L?

2. The heart of a resting adult pumps blood at a rate of
5.00 L/min. (a) Convert this to . (b) What is
this rate in ?

3. Blood is pumped from the heart at a rate of 5.0 L/
min into the aorta (of radius 1.0 cm). Determine the
speed of blood through the aorta.

4. Blood is flowing through an artery of radius 2 mm at
a rate of 40 cm/s. Determine the flow rate and the
volume that passes through the artery in a period of
30 s.

5. The Huka Falls on the Waikato River is one of New
Zealand’s most visited natural tourist attractions
(see Figure 12.29). On average the river has a flow
rate of about 300,000 L/s. At the gorge, the river
narrows to 20 m wide and averages 20 m deep. (a)
What is the average speed of the river in the gorge?
(b) What is the average speed of the water in the
river downstream of the falls when it widens to 60
m and its depth increases to an average of 40 m?

FIGURE 12.29 The Huka Falls in Taupo, New Zealand,
demonstrate flow rate. (credit: RaviGogna, Flickr)

6. A major artery with a cross-sectional area of
branches into 18 smaller arteries, each

with an average cross-sectional area of .
By what factor is the average velocity of the blood
reduced when it passes into these branches?

7. (a) As blood passes through the capillary bed in an
organ, the capillaries join to form venules (small
veins). If the blood speed increases by a factor of
4.00 and the total cross-sectional area of the
venules is , what is the total cross-
sectional area of the capillaries feeding these
venules? (b) How many capillaries are involved if
their average diameter is ?

8. The human circulation system has approximately
capillary vessels. Each vessel has a

diameter of about . Assuming cardiac output
is 5 L/min, determine the average velocity of blood
flow through each capillary vessel.

9. (a) Estimate the time it would take to fill a private
swimming pool with a capacity of 80,000 L using a
garden hose delivering 60 L/min. (b) How long
would it take to fill if you could divert a moderate
size river, flowing at , into it?

10. The flow rate of blood through a
-radius capillary is . (a) What is
the speed of the blood flow? (This small speed
allows time for diffusion of materials to and from
the blood.) (b) Assuming all the blood in the body
passes through capillaries, how many of them
must there be to carry a total flow of ?
(The large number obtained is an overestimate,
but it is still reasonable.)

11. (a) What is the fluid speed in a fire hose with a
9.00-cm diameter carrying 80.0 L of water per
second? (b) What is the flow rate in cubic meters
per second? (c) Would your answers be different if
salt water replaced the fresh water in the fire
hose?

12. The main uptake air duct of a forced air gas heater
is 0.300 m in diameter. What is the average speed
of air in the duct if it carries a volume equal to that
of the house’s interior every 15 min? The inside
volume of the house is equivalent to a rectangular
solid 13.0 m wide by 20.0 m long by 2.75 m high.
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13. Water is moving at a velocity of 2.00 m/s through a
hose with an internal diameter of 1.60 cm. (a)
What is the flow rate in liters per second? (b) The
fluid velocity in this hose’s nozzle is 15.0 m/s.
What is the nozzle’s inside diameter?

14. Prove that the speed of an incompressible fluid
through a constriction, such as in a Venturi tube,
increases by a factor equal to the square of the
factor by which the diameter decreases. (The
converse applies for flow out of a constriction into
a larger-diameter region.)

15. Water emerges straight down from a faucet with a
1.80-cm diameter at a speed of 0.500 m/s.
(Because of the construction of the faucet, there is
no variation in speed across the stream.) (a) What
is the flow rate in ? (b) What is the diameter
of the stream 0.200 m below the faucet? Neglect
any effects due to surface tension.

16. Unreasonable Results
A mountain stream is 10.0 m wide and averages
2.00 m in depth. During the spring runoff, the flow
in the stream reaches . (a) What is
the average velocity of the stream under these
conditions? (b) What is unreasonable about this
velocity? (c) What is unreasonable or inconsistent
about the premises?

12.2 Bernoulli’s Equation

17. Verify that pressure has units of energy per unit
volume.

18. Suppose you have a wind speed gauge like the
pitot tube shown in Example 12.2(b). By what
factor must wind speed increase to double the
value of in the manometer? Is this independent
of the moving fluid and the fluid in the
manometer?

19. If the pressure reading of your pitot tube is 15.0
mm Hg at a speed of 200 km/h, what will it be at
700 km/h at the same altitude?

20. Calculate the maximum height to which water
could be squirted with the hose in Example 12.2
example if it: (a) Emerges from the nozzle. (b)
Emerges with the nozzle removed, assuming the
same flow rate.

21. Every few years, winds in Boulder, Colorado, attain
sustained speeds of 45.0 m/s (about 100 mi/h)
when the jet stream descends during early spring.
Approximately what is the force due to the
Bernoulli effect on a roof having an area of

? Typical air density in Boulder is
, and the corresponding atmospheric

pressure is . (Bernoulli’s
principle as stated in the text assumes laminar
flow. Using the principle here produces only an
approximate result, because there is significant
turbulence.)

22. (a) Calculate the approximate force on a square
meter of sail, given the horizontal velocity of the
wind is 6.00 m/s parallel to its front surface and
3.50 m/s along its back surface. Take the density
of air to be . (The calculation, based on
Bernoulli’s principle, is approximate due to the
effects of turbulence.) (b) Discuss whether this
force is great enough to be effective for propelling
a sailboat.

23. (a) What is the pressure drop due to the Bernoulli
effect as water goes into a 3.00-cm-diameter
nozzle from a 9.00-cm-diameter fire hose while
carrying a flow of 40.0 L/s? (b) To what maximum
height above the nozzle can this water rise? (The
actual height will be significantly smaller due to air
resistance.)

24. (a) Using Bernoulli’s equation, show that the
measured fluid speed for a pitot tube, like the

one in Figure 12.7(b), is given by

where is the height of the manometer fluid, is
the density of the manometer fluid, is the
density of the moving fluid, and is the
acceleration due to gravity. (Note that is indeed
proportional to the square root of , as stated in
the text.) (b) Calculate for moving air if a
mercury manometer’s is 0.200 m.

12.3 The Most General Applications of
Bernoulli’s Equation

25. Hoover Dam on the Colorado River is the highest
dam in the United States at 221 m, with an output
of 1300 MW. The dam generates electricity with
water taken from a depth of 150 m and an average
flow rate of . (a) Calculate the power in
this flow. (b) What is the ratio of this power to the
facility’s average of 680 MW?
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26. A frequently quoted rule of thumb in aircraft
design is that wings should produce about 1000 N
of lift per square meter of wing. (The fact that a
wing has a top and bottom surface does not
double its area.) (a) At takeoff, an aircraft travels
at 60.0 m/s, so that the air speed relative to the
bottom of the wing is 60.0 m/s. Given the sea level
density of air to be , how fast must it
move over the upper surface to create the ideal
lift? (b) How fast must air move over the upper
surface at a cruising speed of 245 m/s and at an
altitude where air density is one-fourth that at sea
level? (Note that this is not all of the aircraft’s
lift—some comes from the body of the plane, some
from engine thrust, and so on. Furthermore,
Bernoulli’s principle gives an approximate answer
because flow over the wing creates turbulence.)

27. The left ventricle of a resting adult’s heart pumps
blood at a flow rate of , increasing its
pressure by 110 mm Hg, its speed from zero to
30.0 cm/s, and its height by 5.00 cm. (All numbers
are averaged over the entire heartbeat.) Calculate
the total power output of the left ventricle. Note
that most of the power is used to increase blood
pressure.

28. A sump pump (used to drain water from the
basement of houses built below the water table) is
draining a flooded basement at the rate of 0.750
L/s, with an output pressure of .
(a) The water enters a hose with a 3.00-cm inside
diameter and rises 2.50 m above the pump. What
is its pressure at this point? (b) The hose goes over
the foundation wall, losing 0.500 m in height, and
widens to 4.00 cm in diameter. What is the
pressure now? You may neglect frictional losses in
both parts of the problem.

12.4 Viscosity and Laminar Flow;
Poiseuille’s Law

29. (a) Calculate the retarding force due to the
viscosity of the air layer between a cart and a level
air track given the following information—air
temperature is , the cart is moving at 0.400
m/s, its surface area is , and the
thickness of the air layer is . (b)
What is the ratio of this force to the weight of the
0.300-kg cart?

30. What force is needed to pull one microscope slide
over another at a speed of 1.00 cm/s, if there is a
0.500-mm-thick layer of water between
them and the contact area is ?

31. A glucose solution being administered with an IV
has a flow rate of . What will the
new flow rate be if the glucose is replaced by
whole blood having the same density but a
viscosity 2.50 times that of the glucose? All other
factors remain constant.

32. The pressure drop along a length of artery is 100
Pa, the radius is 10 mm, and the flow is laminar.
The average speed of the blood is 15 mm/s. (a)
What is the net force on the blood in this section
of artery? (b) What is the power expended
maintaining the flow?

33. A small artery has a length of and a
radius of . If the pressure drop
across the artery is 1.3 kPa, what is the flow rate
through the artery? (Assume that the temperature
is .)

34. Fluid originally flows through a tube at a rate of
. To illustrate the sensitivity of flow rate

to various factors, calculate the new flow rate for
the following changes with all other factors
remaining the same as in the original conditions.
(a) Pressure difference increases by a factor of
1.50. (b) A new fluid with 3.00 times greater
viscosity is substituted. (c) The tube is replaced by
one having 4.00 times the length. (d) Another tube
is used with a radius 0.100 times the original. (e)
Yet another tube is substituted with a radius 0.100
times the original and half the length, and the
pressure difference is increased by a factor of
1.50.

35. The arterioles (small arteries) leading to an organ,
constrict in order to decrease flow to the organ. To
shut down an organ, blood flow is reduced
naturally to 1.00% of its original value. By what
factor did the radii of the arterioles constrict?
Penguins do this when they stand on ice to reduce
the blood flow to their feet.

36. Angioplasty is a technique in which arteries
partially blocked with plaque are dilated to
increase blood flow. By what factor must the
radius of an artery be increased in order to
increase blood flow by a factor of 10?

37. (a) Suppose a blood vessel’s radius is decreased
to 90.0% of its original value by plaque deposits
and the body compensates by increasing the
pressure difference along the vessel to keep the
flow rate constant. By what factor must the
pressure difference increase? (b) If turbulence is
created by the obstruction, what additional effect
would it have on the flow rate?
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38. A spherical particle falling at a terminal speed in a
liquid must have the gravitational force balanced
by the drag force and the buoyant force. The
buoyant force is equal to the weight of the
displaced fluid, while the drag force is assumed to
be given by Stokes Law, . Show that
the terminal speed is given by

where is the radius of the

sphere, is its density, and is the density of
the fluid and the coefficient of viscosity.

39. Using the equation of the previous problem, find
the viscosity of motor oil in which a steel ball of
radius 0.8 mm falls with a terminal speed of 4.32
cm/s. The densities of the ball and the oil are 7.86
and 0.88 g/mL, respectively.

40. A skydiver will reach a terminal velocity when the
air drag equals their weight. For a skydiver with
high speed and a large body, turbulence is a factor.
The drag force then is approximately proportional
to the square of the velocity. Taking the drag force
to be and setting this equal to the
person’s weight, find the terminal speed for a
person falling “spread eagle.” Find both a formula
and a number for , with assumptions as to size.

41. A layer of oil 1.50 mm thick is placed between two
microscope slides. Researchers find that a force of

is required to glide one over the
other at a speed of 1.00 cm/s when their contact
area is . What is the oil’s viscosity? What
type of oil might it be?

42. (a) Verify that a 19.0% decrease in laminar flow
through a tube is caused by a 5.00% decrease in
radius, assuming that all other factors remain
constant, as stated in the text. (b) What increase
in flow is obtained from a 5.00% increase in
radius, again assuming all other factors remain
constant?

43. Example 12.8 dealt with the flow of saline solution
in an IV system. (a) Verify that a pressure of

is created at a depth of 1.61 m
in a saline solution, assuming its density to be that
of sea water. (b) Calculate the new flow rate if the
height of the saline solution is decreased to 1.50
m. (c) At what height would the direction of flow
be reversed? (This reversal can be a problem
when patients stand up.)

44. When physicians diagnose arterial blockages, they
quote the reduction in flow rate. If the flow rate in
an artery has been reduced to 10.0% of its normal
value by a blood clot and the average pressure
difference has increased by 20.0%, by what factor
has the clot reduced the radius of the artery?

45. During a marathon race, a runner’s blood flow
increases to 10.0 times her resting rate. Her
blood’s viscosity has dropped to 95.0% of its
normal value, and the blood pressure difference
across the circulatory system has increased by
50.0%. By what factor has the average radii of her
blood vessels increased?

46. Water supplied to a house by a water main has a
pressure of early on a summer
day when neighborhood use is low. This pressure
produces a flow of 20.0 L/min through a garden
hose. Later in the day, pressure at the exit of the
water main and entrance to the house drops, and
a flow of only 8.00 L/min is obtained through the
same hose. (a) What pressure is now being
supplied to the house, assuming resistance is
constant? (b) By what factor did the flow rate in
the water main increase in order to cause this
decrease in delivered pressure? The pressure at
the entrance of the water main is

, and the original flow rate was
200 L/min. (c) How many more users are there,
assuming each would consume 20.0 L/min in the
morning?

47. An oil gusher shoots crude oil 25.0 m into the air
through a pipe with a 0.100-m diameter.
Neglecting air resistance but not the resistance of
the pipe, and assuming laminar flow, calculate the
gauge pressure at the entrance of the 50.0-m-long
vertical pipe. Take the density of the oil to be

and its viscosity to be
(or ). Note that you must take into
account the pressure due to the 50.0-m column of
oil in the pipe.

48. Concrete is pumped from a cement mixer to the
place it is being laid, instead of being carried in
wheelbarrows. The flow rate is 200.0 L/min
through a 50.0-m-long, 8.00-cm-diameter hose,
and the pressure at the pump is

. (a) Calculate the resistance of
the hose. (b) What is the viscosity of the concrete,
assuming the flow is laminar? (c) How much
power is being supplied, assuming the point of use
is at the same level as the pump? You may neglect
the power supplied to increase the concrete’s
velocity.

49. Construct Your Own Problem
Consider a coronary artery constricted by
arteriosclerosis. Construct a problem in which you
calculate the amount by which the diameter of the
artery is decreased, based on an assessment of
the decrease in flow rate.
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50. Consider a river that spreads out in a delta region
on its way to the sea. Construct a problem in
which you calculate the average speed at which
water moves in the delta region, based on the
speed at which it was moving up river. Among the
things to consider are the size and flow rate of the
river before it spreads out and its size once it has
spread out. You can construct the problem for the
river spreading out into one large river or into
multiple smaller rivers.

12.5 The Onset of Turbulence

51. Verify that the flow of oil is laminar (barely) for an
oil gusher that shoots crude oil 25.0 m into the air
through a pipe with a 0.100-m diameter. The
vertical pipe is 50 m long. Take the density of the
oil to be and its viscosity to be

(or ).
52. Show that the Reynolds number is unitless by

substituting units for all the quantities in its
definition and cancelling.

53. Calculate the Reynolds numbers for the flow of
water through (a) a nozzle with a radius of 0.250
cm and (b) a garden hose with a radius of 0.900
cm, when the nozzle is attached to the hose. The
flow rate through hose and nozzle is 0.500 L/s.
Can the flow in either possibly be laminar?

54. A fire hose has an inside diameter of 6.40 cm.
Suppose such a hose carries a flow of 40.0 L/s
starting at a gauge pressure of .
The hose goes 10.0 m up a ladder to a nozzle
having an inside diameter of 3.00 cm. Calculate
the Reynolds numbers for flow in the fire hose and
nozzle to show that the flow in each must be
turbulent.

55. Concrete is pumped from a cement mixer to the
place it is being laid, instead of being carried in
wheelbarrows. The flow rate is 200.0 L/min
through a 50.0-m-long, 8.00-cm-diameter hose,
and the pressure at the pump is

. Verify that the flow of concrete
is laminar taking concrete’s viscosity to be

, and given its density is
.

56. At what flow rate might turbulence begin to
develop in a water main with a 0.200-m diameter?
Assume a temperature.

57. What is the greatest average speed of blood flow
at in an artery of radius 2.00 mm if the flow
is to remain laminar? What is the corresponding
flow rate? Take the density of blood to be

.

58. In Take-Home Experiment: Inhalation, we
measured the average flow rate of air traveling
through the trachea during each inhalation. Now
calculate the average air speed in meters per
second through your trachea during each
inhalation. The radius of the trachea in adult
humans is approximately . From the data
above, calculate the Reynolds number for the air
flow in the trachea during inhalation. Do you
expect the air flow to be laminar or turbulent?

59. Gasoline is piped underground from refineries to
major users. The flow rate is
(about 500 gal/min), the viscosity of gasoline is

, and its density is
. (a) What minimum diameter must the

pipe have if the Reynolds number is to be less
than 2000? (b) What pressure difference must be
maintained along each kilometer of the pipe to
maintain this flow rate?

60. Assuming that blood is an ideal fluid, calculate the
critical flow rate at which turbulence is a certainty
in the aorta. Take the diameter of the aorta to be
2.50 cm. (Turbulence will actually occur at lower
average flow rates, because blood is not an ideal
fluid. Furthermore, since blood flow pulses,
turbulence may occur during only the high-
velocity part of each heartbeat.)

61. Unreasonable Results
A fairly large garden hose has an internal radius of
0.600 cm and a length of 23.0 m. The nozzleless
horizontal hose is attached to a faucet, and it
delivers 50.0 L/s. (a) What water pressure is
supplied by the faucet? (b) What is unreasonable
about this pressure? (c) What is unreasonable
about the premise? (d) What is the Reynolds
number for the given flow? (Take the viscosity of
water as .)

12.7 Molecular Transport Phenomena:
Diffusion, Osmosis, and Related Processes

62. You can smell perfume very shortly after opening
the bottle. To show that it is not reaching your
nose by diffusion, calculate the average distance a
perfume molecule moves in one second in air,
given its diffusion constant to be

.
63. What is the ratio of the average distances that

oxygen will diffuse in a given time in air and water?
Why is this distance less in water (equivalently,
why is less in water)?
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64. Oxygen reaches the veinless cornea of the eye by
diffusing through its tear layer, which is 0.500-mm
thick. How long does it take the average oxygen
molecule to do this?

65. (a) Find the average time required for an oxygen
molecule to diffuse through a 0.200-mm-thick
tear layer on the cornea. (b) How much time is
required to diffuse of oxygen to the
cornea if its surface area is ?

66. Suppose hydrogen and oxygen are diffusing
through air. A small amount of each is released
simultaneously. How much time passes before the
hydrogen is 1.00 s ahead of the oxygen? Such
differences in arrival times are used as an
analytical tool in gas chromatography.
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