
negligible. If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an
angular velocity of 13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per
second, these angular velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at
about 50 km/h in the first case. Summer Olympics, here he comes! Confirmation of these numbers is left as an
exercise for the reader.

CHECK YOUR UNDERSTANDING

Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities
that depend on only one factor. For example, mass is related solely to the numbers of atoms of various types in an
object. Are torque and moment of inertia similarly simple?
Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia
depends on both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these
rotational quantities depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Derive the equation for rotational work.
• Calculate rotational kinetic energy.
• Demonstrate the Law of Conservation of Energy.

In this module, we will learn about work and energy associated with rotational motion. Figure 10.13 shows a worker
using an electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of
steel are pared from the pole. The stone continues to turn even after the motor is turned off, but it is eventually
brought to a stop by friction. Clearly, the motor had to work to get the stone spinning. This work went into heat, light,
sound, vibration, and considerable rotational kinetic energy.

FIGURE 10.13 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light,
sound, and vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular
Motion and Gravitation for translational motion, and we can build on that knowledge when considering work done in
rotational motion. The simplest rotational situation is one in which the net force is exerted perpendicular to the
radius of a disk (as shown in Figure 10.14) and remains perpendicular as the disk starts to rotate. The force is
parallel to the displacement, and so the net work done is the product of the force times the arc length traveled:

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the
equation by , and gather terms:

We recognize that and , so that
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This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as
force multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation

is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first
step is to note that , so that

FIGURE 10.14 The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus
. The net work goes into rotational kinetic energy.

Now, we solve one of the rotational kinematics equations for . We start with the equation

Next, we solve for :

Substituting this into the equation for net and gathering terms yields

This equation is the work-energy theorem for rotational motion only. As you may recall, net work changes the
kinetic energy of a system. Through an analogy with translational motion, we define the term to be
rotational kinetic energy for an object with a moment of inertia and an angular velocity :

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with being
analogous to and to . Rotational kinetic energy has important effects. Flywheels, for example, can be used to
store large amounts of rotational kinetic energy in a vehicle, as seen in Figure 10.15.
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Making Connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first
presented in Uniform Circular Motion and Gravitation.
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FIGURE 10.15 Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large
flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into . It can also convert
translational kinetic energy, when the bus stops, into . The flywheel’s energy can then be used to accelerate, to go up another hill, or
to keep the bus from slowing down due to friction.

EXAMPLE 10.8

Calculating the Work and Energy for Spinning a Grindstone
Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of
a revolution as shown in Figure 10.16. In this example, we verify that the work done by the torque she exerts equals
the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of

? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and
the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c)
What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation . We have enough information to calculate the torque
and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic
relationships. In the last part, we can calculate the rotational kinetic energy from its expression in .

Solution for (a)

The net work is expressed in the equation

where net is the applied force multiplied by the radius because there is no retarding friction, and the force is
perpendicular to . The angle is given. Substituting the given values in the equation above yields

Noting that ,

FIGURE 10.16 A large grindstone is given a spin by a person grasping its outer edge.
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Solution for (b)

To find from the given information requires more than one step. We start with the kinematic relationship in the
equation

Note that because we start from rest. Taking the square root of the resulting equation gives

Now we need to find . One possibility is

where the torque is

The formula for the moment of inertia for a disk is found in Figure 10.11:

Substituting the values of torque and moment of inertia into the expression for , we obtain

Now, substitute this value and the given value for into the above expression for :

Solution for (c)

The final rotational kinetic energy is

Both and were found above. Thus,

Discussion

The final rotational kinetic energy equals the work done by the torque, which confirms that the work done went into
rotational kinetic energy. We could, in fact, have used an expression for energy instead of a kinematic relation to
solve part (b). We will do this in later examples.

Helicopter pilots are quite familiar with rotational kinetic energy. They know, for example, that a point of no return
will be reached if they allow their blades to slow below a critical angular velocity during flight. The blades lose lift,
and it is impossible to immediately get the blades spinning fast enough to regain it. Rotational kinetic energy must
be supplied to the blades to get them to rotate faster, and enough energy cannot be supplied in time to avoid a
crash. Because of weight limitations, helicopter engines are too small to supply both the energy needed for lift and
to replenish the rotational kinetic energy of the blades once they have slowed down. The rotational kinetic energy is
put into them before takeoff and must not be allowed to drop below this crucial level. One possible way to avoid a
crash is to use the gravitational potential energy of the helicopter to replenish the rotational kinetic energy of the
blades by losing altitude and aligning the blades so that the helicopter is spun up in the descent. Of course, if the
helicopter’s altitude is too low, then there is insufficient time for the blade to regain lift before reaching the ground.
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EXAMPLE 10.9

Calculating Helicopter Energies
A typical small rescue helicopter, similar to the one in Figure 10.17, has four blades, each is 4.00 m long and has a
mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to
their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the
blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at
20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if
all of the rotational kinetic energy could be used to lift it?

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem
relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential
energy.

Solution for (a)

The rotational kinetic energy is

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find
. The angular velocity is

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in Figure 10.11. The total
is four times this moment of inertia, because there are four blades. Thus,

Entering and into the expression for rotational kinetic energy gives

Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation. Entering the given values of
mass and velocity, we obtain

Problem-Solving Strategy for Rotational Energy

1. Determine that energy or work is involved in the rotation.
2. Determine the system of interest. A sketch usually helps.
3. Analyze the situation to determine the types of work and energy involved.
4. For closed systems, mechanical energy is conserved. That is, Note that and

may each include translational and rotational contributions.
5. For open systems, mechanical energy may not be conserved, and other forms of energy (referred to

previously as ), such as heat transfer, may enter or leave the system. Determine what they are, and
calculate them as necessary.

6. Eliminate terms wherever possible to simplify the algebra.
7. Check the answer to see if it is reasonable.
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To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this
height, we equate those two energies:

or

We now solve for and substitute known values into the resulting equation

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic
energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to
which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the
amount of rotational kinetic energy in the blades.

FIGURE 10.17 The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be
put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously
provide lift and put significant rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue
Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown.
(credit: 111 Emergency, Flickr)

10.77

10.78

10.79

10.80

10.81

412 10 • Rotational Motion and Angular Momentum

Access for free at openstax.org



How Thick Is the Soup? Or Why Don’t All Objects Roll Downhill at the Same Rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast,
the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why
should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest.
Each can starting from rest means each starts with the same gravitational potential energy , which is
converted entirely to , provided each rolls without slipping. , however, can take the form of or ,
and total is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for
translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate,
whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can’s original
gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in Figure 10.18.

FIGURE 10.18 Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but
just slides down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the
incline without slipping. The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but
not the thin soup). The third can contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the
initial PE for rotational KE, leaving less for translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the
change in kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation
of energy gives

More specifically,

or

So, the initial is divided between translational kinetic energy and rotational kinetic energy; and the greater is,
the less energy goes into translation. If the can slides down without friction, then and all the energy goes into
translation; thus, the can goes faster.

Making Connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of .
Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.
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Take-Home Experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an
inclined plane and explain why. See if your prediction is correct. You could also do this experiment by collecting
several empty cylindrical containers of the same size and filling them with different materials such as wet or dry
sand.
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EXAMPLE 10.10

Calculating the Speed of a Cylinder Rolling Down an Incline
Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a
mass of 0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in
terms of translational quantities to end up with as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

Before we can solve for , we must get an expression for from Figure 10.11. Because and are related (note
here that the cylinder is rolling without slipping), we must also substitute the relationship into the
expression. These substitutions yield

Interestingly, the cylinder’s radius and mass cancel, yielding

Solving algebraically, the equation for the final velocity gives

Substituting known values into the resulting expression yields

Discussion

Because and cancel, the result is valid for any solid cylinder, implying that all solid cylinders will
roll down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what
Galileo actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid
without friction down the incline without rolling, then the entire gravitational potential energy would go into
translational kinetic energy. Thus, and , which is 22% greater than . That is, the
cylinder would go faster at the bottom.

CHECK YOUR UNDERSTANDING

Analogy of Rotational and Translational Kinetic Energy Is rotational kinetic energy completely analogous to
translational kinetic energy? What, if any, are their differences? Give an example of each type of kinetic energy.
Solution
Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with
the coordinated (non-random) movement of mass relative to some reference frame. The only difference between
rotational and translational kinetic energy is that translational is straight line motion while rotational is not. An
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example of both kinetic and translational kinetic energy is found in a bike tire while being ridden down a bike path.
The rotational motion of the tire means it has rotational kinetic energy while the movement of the bike along the
path means the tire also has translational kinetic energy. If you were to lift the front wheel of the bike and spin it
while the bike is stationary, then the wheel would have only rotational kinetic energy relative to the Earth.

10.5 Angular Momentum and Its Conservation
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the analogy between angular momentum and linear momentum.
• Observe the relationship between torque and angular momentum.
• Apply the law of conservation of angular momentum.

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to
spin faster and faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster?
Questions like these have answers based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite
reasonable, then, to define angular momentum as

This equation is an analog to the definition of linear momentum as . Units for linear momentum are
while units for angular momentum are . As we would expect, an object that has a large moment of inertia

, such as Earth, has a very large angular momentum. An object that has a large angular velocity , such as a
centrifuge, also has a rather large angular momentum.

EXAMPLE 10.11

Calculating Angular Momentum of the Earth
Strategy
No information is given in the statement of the problem; so we must look up pertinent data before we can calculate

. First, according to Figure 10.11, the formula for the moment of inertia of a sphere is

so that

Earth’s mass is and its radius is . The Earth’s angular velocity is, of course,
exactly one revolution per day, but we must covert to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for and converting to radians per second gives
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Making Connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and
Gravitation. It has the same implications in terms of carrying rotation forward, and it is conserved when the net
external torque is zero. Angular momentum, like linear momentum, is also a property of the atoms and
subatomic particles.
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