


10.2 Kinematics of Rotational Motion
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe the kinematics of rotational motion.
• Derive rotational kinematic equations.
• Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like , , and are related to one another.
For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly
and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration is large for a
long period of time , then the final angular velocity and angle of rotation are large. The wheel’s rotational
motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final
velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among
rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating , , and
. To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

Note that in rotational motion , and we shall use the symbol for tangential or linear acceleration from now
on. As in linear kinematics, we assume is constant, which means that angular acceleration is also a constant,
because . Now, let us substitute and into the linear equation above:

The radius cancels in the equation, yielding

where is the initial angular velocity. This last equation is a kinematic relationship among , , and —that is, it
describes their relationship without reference to forces or masses that may affect rotation. It is also precisely
analogous in form to its translational counterpart.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics, we can derive the
following four rotational kinematic equations (presented together with their translational counterparts):

Rotational Translational

(constant , )

(constant , )

(constant , )

TABLE 10.2 Rotational Kinematic Equations

10.17

10.18

10.19

Making Connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-
Dimensional Kinematics. Kinematics is concerned with the description of motion without regard to force or
mass. We will find that translational kinematic quantities, such as displacement, velocity, and acceleration have
direct analogs in rotational motion.
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In these equations, the subscript 0 denotes initial values ( , , and are initial values), and the average angular
velocity and average velocity are defined as follows:

The equations given above in Table 10.2 can be used to solve any rotational or translational kinematics problem in
which and are constant.

EXAMPLE 10.3

Calculating the Acceleration of a Fishing Reel
A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel.
The whole system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of
rotation. The reel is given an angular acceleration of for 2.00 s as seen in Figure 10.7.

(a) What is the final angular velocity of the reel?

(b) At what speed is fishing line leaving the reel after 2.00 s elapses?

(c) How many revolutions does the reel make?

(d) How many meters of fishing line come off the reel in this time?

Strategy

In each part of this example, the strategy is the same as it was for solving problems in linear kinematics. In
particular, known values are identified and a relationship is then sought that can be used to solve for the unknown.

Solution for (a)

Here and are given and needs to be determined. The most straightforward equation to use is
because the unknown is already on one side and all other terms are known. That equation states that

We are also given that (it starts from rest), so that

Solution for (b)

Now that is known, the speed can most easily be found using the relationship

where the radius of the reel is given to be 4.50 cm; thus,

10.20

Problem-Solving Strategy for Rotational Kinematics

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved. Rotation must
be involved, but without the need to consider forces or masses that affect the motion.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the
situation is useful.

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be

useful to think in terms of a translational analog because by now you are familiar with such motion.
5. Substitute the known values along with their units into the appropriate equation, and obtain numerical

solutions complete with units. Be sure to use units of radians for angles.
6. Check your answer to see if it is reasonable: Does your answer make sense?
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Note again that radians must always be used in any calculation relating linear and angular quantities. Also, because
radians are dimensionless, we have .

Solution for (c)

Here, we are asked to find the number of revolutions. Because , we can find the number of
revolutions by finding in radians. We are given and , and we know is zero, so that can be obtained using

.

Converting radians to revolutions gives

Solution for (d)

The number of meters of fishing line is , which can be obtained through its relationship with :

Discussion

This example illustrates that relationships among rotational quantities are highly analogous to those among linear
quantities. We also see in this example how linear and rotational quantities are connected. The answers to the
questions are realistic. After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is 2100 rpm.
(No wonder reels sometimes make high-pitched sounds.) The amount of fishing line played out is 9.90 m, about
right for when the big fish bites.

FIGURE 10.7 Fishing line coming off a rotating reel moves linearly. Example 10.3 and Example 10.4 consider relationships between
rotational and linear quantities associated with a fishing reel.

EXAMPLE 10.4

Calculating the Duration When the Fishing Reel Slows Down and Stops
Now let us consider what happens if the fisherman applies a brake to the spinning reel, achieving an angular
acceleration of . How long does it take the reel to come to a stop?

Strategy

We are asked to find the time for the reel to come to a stop. The initial and final conditions are different from those
in the previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is

and the final angular velocity is zero. The angular acceleration is given to be .
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Examining the available equations, we see all quantities but t are known in making it easiest to use
this equation.

Solution

The equation states

We solve the equation algebraically for t, and then substitute the known values as usual, yielding

Discussion

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time
to stop the reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the
accelerations involved, and fishermen often let the fish swim for a while before applying brakes on the reel. A tired
fish will be slower, requiring a smaller acceleration.

EXAMPLE 10.5

Calculating the Slow Acceleration of Trains and Their Wheels
Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius
wheels an angular acceleration of . After the wheels have made 200 revolutions (assume no slippage):
(a) How far has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear
velocity of the train?

Strategy

In part (a), we are asked to find , and in (b) we are asked to find and . We are given the number of revolutions ,
the radius of the wheels , and the angular acceleration .

Solution for (a)

The distance is very easily found from the relationship between distance and rotation angle:

Solving this equation for yields

Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a
relationship between linear and rotational quantities:

Now we can substitute the known values into to find the distance the train moved down the track:

Solution for (b)

We cannot use any equation that incorporates to find , because the equation would have at least two unknown
values. The equation will work, because we know the values for all variables except :

Taking the square root of this equation and entering the known values gives
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We can find the linear velocity of the train, , through its relationship to :

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. Figure 10.8
shows a fly on the edge of a rotating microwave oven plate. The example below calculates the total distance it
travels.

FIGURE 10.8 The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

EXAMPLE 10.6

Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven Plate
A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the
microwave and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m
and rotates at 6.0 rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the
start-up and slow-down times.)

Strategy

First, find the total number of revolutions , and then the linear distance traveled. can be used to find
because is given to be 6.0 rpm.

Solution

Entering known values into gives

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like from an angular
quantity like :

Now, using the relationship between and , we can determine the distance traveled:
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Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually
zero for complete revolutions because they bring the fly back to its original position. The distinction between total
distance traveled and displacement was first noted in One-Dimensional Kinematics.

CHECK YOUR UNDERSTANDING

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws
of physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)
Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With
kinematics, we can describe many things to great precision but kinematics does not consider causes. For example, a
large angular acceleration describes a very rapid change in angular velocity without any consideration of its cause.

10.3 Dynamics of Rotational Motion: Rotational Inertia
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the relationship between force, mass and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and

angular acceleration.

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular
velocity as seen in Figure 10.9. In fact, your intuition is reliable in predicting many of the factors that are involved.
For example, we know that a door opens slowly if we push too close to its hinges. Furthermore, we know that the
more massive the door, the more slowly it opens. The first example implies that the farther the force is applied from
the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely
proportional to mass. These relationships should seem very similar to the familiar relationships among force, mass,
and acceleration embodied in Newton’s second law of motion. There are, in fact, precise rotational analogs to both
force and mass.

FIGURE 10.9 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more
massive the wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if
we exert a force on a point mass that is at a distance from a pivot point, as shown in Figure 10.10. Because
the force is perpendicular to , an acceleration is obtained in the direction of . We can rearrange this
equation such that and then look for ways to relate this expression to expressions for rotational quantities.
We note that , and we substitute this expression into , yielding

Recall that torque is the turning effectiveness of a force. In this case, because is perpendicular to , torque is
simply . So, if we multiply both sides of the equation above by , we get torque on the left-hand side. That is,

10.40

402 10 • Rotational Motion and Angular Momentum

Access for free at openstax.org


	Blank Page



