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Why do tornadoes spin at all? And why
do tornados spin so rapidly? The answer is that air masses that produce tornadoes are themselves rotating, and
when the radii of the air masses decrease, their rate of rotation increases. An ice skater increases her spin in an
exactly analogous manner as seen in Figure 10.2. The skater starts her rotation with outstretched limbs and
increases her spin by pulling them in toward her body. The same physics describes the exhilarating spin of a skater
and the wrenching force of a tornado.

Clearly, force, energy, and power are associated with rotational motion. These and other aspects of rotational
motion are covered in this chapter. We shall see that all important aspects of rotational motion either have already
been defined for linear motion or have exact analogs in linear motion. First, we look at angular acceleration—the
rotational analog of linear acceleration.

FIGURE 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of
paper and have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently,
particularly at the bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic
and Atmospheric Administration)
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FIGURE 10.2 This figure skater increases her rate of spin by pulling her arms and her extended leg closer to her axis of rotation. (credit:
Luu, Wikimedia Commons)

Click to view content (https://openstax.org/books/college-physics-2e/pages/10-introduction-to-rotational-motion-
and-angular-momentum)
10.1 Angular Acceleration
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Describe uniform circular motion.
• Explain non-uniform circular motion.
• Calculate angular acceleration of an object.
• Observe the link between linear and angular acceleration.

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at
constant speed and, hence, constant angular velocity. Recall that angular velocity was defined as the time rate of
change of angle :

where is the angle of rotation as seen in Figure 10.3. The relationship between angular velocity and linear
velocity was also defined in Rotation Angle and Angular Velocity as

or

where is the radius of curvature, also seen in Figure 10.3. According to the sign convention, the counter clockwise
direction is considered as positive direction and clockwise direction as negative

FIGURE 10.3 This figure shows uniform circular motion and some of its defined quantities.
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Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest,
or when a computer’s hard disk slows to a halt when switched off. In all these cases, there is an angular
acceleration, in which changes. The faster the change occurs, the greater the angular acceleration. Angular
acceleration is defined as the rate of change of angular velocity. In equation form, angular acceleration is
expressed as follows:

where is the change in angular velocity and is the change in time. The units of angular acceleration are
, or . If increases, then is positive. If decreases, then is negative.

EXAMPLE 10.1

Calculating the Angular Acceleration and Deceleration of a Bike Wheel
Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular
velocity of 250 rpm in 5.00 s. (a) Calculate the angular acceleration in . (b) If she now slams on the brakes,
causing an angular acceleration of , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in because the final angular velocity and
time are given. We see that is 250 rpm and is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

Because is in revolutions per minute (rpm) and we want the standard units of for angular acceleration, we
need to convert from rpm to rad/s:

Entering this quantity into the expression for , we get

Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by
using the definition of angular acceleration and solving for , yielding

Solution for (b)

Here the angular velocity decreases from (250 rpm) to zero, so that is , and is given to
be . Thus,
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Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an
appreciable angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular
velocity quickly goes to zero. In both cases, the relationships are analogous to what happens with linear motion. For
example, there is a large deceleration when you crash into a brick wall—the velocity change is large in a short time
interval.

If the bicycle in the preceding example had been on its wheels instead of upside-down, it would first have
accelerated along the ground and then come to a stop. This connection between circular motion and linear motion
needs to be explored. For example, it would be useful to know how linear and angular acceleration are related. In
circular motion, linear acceleration is tangent to the circle at the point of interest, as seen in Figure 10.4. Thus, linear
acceleration is called tangential acceleration .

FIGURE 10.4 In circular motion, linear acceleration , occurs as the magnitude of the velocity changes: is tangent to the motion. In the
context of circular motion, linear acceleration is also called tangential acceleration .

Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction. We know from
Uniform Circular Motion and Gravitation that in circular motion centripetal acceleration, , refers to changes in the
direction of the velocity but not its magnitude. An object undergoing circular motion experiences centripetal
acceleration, as seen in Figure 10.5. Thus, and are perpendicular and independent of one another. Tangential
acceleration is directly related to the angular acceleration and is linked to an increase or decrease in the
velocity, but not its direction.

FIGURE 10.5 Centripetal acceleration occurs as the direction of velocity changes; it is perpendicular to the circular motion. Centripetal
and tangential acceleration are thus perpendicular to each other.

Now we can find the exact relationship between linear acceleration and angular acceleration . Because linear
acceleration is proportional to a change in the magnitude of the velocity, it is defined (as it was in One-Dimensional
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Kinematics) to be

For circular motion, note that , so that

The radius is constant for circular motion, and so . Thus,

By definition, . Thus,

or

These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the
angular acceleration is, the larger the linear (tangential) acceleration is, and vice versa. For example, the greater the
angular acceleration of a car’s drive wheels, the greater the acceleration of the car. The radius also matters. For
example, the smaller a wheel, the smaller its linear acceleration for a given angular acceleration .

EXAMPLE 10.2

Calculating the Angular Acceleration of a Motorcycle Wheel
A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular
acceleration of its 0.320-m-radius wheels? (See Figure 10.6.)

FIGURE 10.6 The linear acceleration of a motorcycle is accompanied by an angular acceleration of its wheels.

Strategy

We are given information about the linear velocities of the motorcycle. Thus, we can find its linear acceleration .
Then, the expression can be used to find the angular acceleration.

Solution
The linear acceleration is

We also know the radius of the wheels. Entering the values for and into , we get
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Discussion

Units of radians are dimensionless and appear in any relationship between angular and linear quantities.

So far, we have defined three rotational quantities— , and . These quantities are analogous to the translational
quantities , and . Table 10.1 displays rotational quantities, the analogous translational quantities, and the
relationships between them.

Rotational Translational Relationship

TABLE 10.1 Rotational and Translational
Quantities

CHECK YOUR UNDERSTANDING

Angular acceleration is a vector, having both magnitude and direction. How do we denote its magnitude and
direction? Illustrate with an example.
Solution
The magnitude of angular acceleration is and its most common units are . The direction of angular
acceleration along a fixed axis is denoted by a + or a – sign, just as the direction of linear acceleration in one
dimension is denoted by a + or a – sign. For example, consider a gymnast doing a forward flip. Her angular
momentum would be parallel to the mat and to her left. The magnitude of her angular acceleration would be
proportional to her angular velocity (spin rate) and her moment of inertia about her spin axis.

10.16

Making Connections: Take-Home Experiment

Sit down with your feet on the ground on a chair that rotates. Lift one of your legs such that it is unbent
(straightened out). Using the other leg, begin to rotate yourself by pushing on the ground. Stop using your leg to
push the ground but allow the chair to rotate. From the origin where you began, sketch the angle, angular
velocity, and angular acceleration of your leg as a function of time in the form of three separate graphs. Estimate
the magnitudes of these quantities.

Ladybug Revolution

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or
choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y
position, velocity, and acceleration using vectors or graphs.

Click to view content (https://openstax.org/l/28ladybugrevolutionrotation).
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10.2 Kinematics of Rotational Motion
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe the kinematics of rotational motion.
• Derive rotational kinematic equations.
• Evaluate problem solving strategies for rotational kinematics.

Just by using our intuition, we can begin to see how rotational quantities like , , and are related to one another.
For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly
and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration is large for a
long period of time , then the final angular velocity and angle of rotation are large. The wheel’s rotational
motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final
velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among
rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating , , and
. To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

Note that in rotational motion , and we shall use the symbol for tangential or linear acceleration from now
on. As in linear kinematics, we assume is constant, which means that angular acceleration is also a constant,
because . Now, let us substitute and into the linear equation above:

The radius cancels in the equation, yielding

where is the initial angular velocity. This last equation is a kinematic relationship among , , and —that is, it
describes their relationship without reference to forces or masses that may affect rotation. It is also precisely
analogous in form to its translational counterpart.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics, we can derive the
following four rotational kinematic equations (presented together with their translational counterparts):

Rotational Translational

(constant , )

(constant , )

(constant , )

TABLE 10.2 Rotational Kinematic Equations

10.17

10.18

10.19

Making Connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-
Dimensional Kinematics. Kinematics is concerned with the description of motion without regard to force or
mass. We will find that translational kinematic quantities, such as displacement, velocity, and acceleration have
direct analogs in rotational motion.
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In these equations, the subscript 0 denotes initial values ( , , and are initial values), and the average angular
velocity and average velocity are defined as follows:

The equations given above in Table 10.2 can be used to solve any rotational or translational kinematics problem in
which and are constant.

EXAMPLE 10.3

Calculating the Acceleration of a Fishing Reel
A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel.
The whole system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of
rotation. The reel is given an angular acceleration of for 2.00 s as seen in Figure 10.7.

(a) What is the final angular velocity of the reel?

(b) At what speed is fishing line leaving the reel after 2.00 s elapses?

(c) How many revolutions does the reel make?

(d) How many meters of fishing line come off the reel in this time?

Strategy

In each part of this example, the strategy is the same as it was for solving problems in linear kinematics. In
particular, known values are identified and a relationship is then sought that can be used to solve for the unknown.

Solution for (a)

Here and are given and needs to be determined. The most straightforward equation to use is
because the unknown is already on one side and all other terms are known. That equation states that

We are also given that (it starts from rest), so that

Solution for (b)

Now that is known, the speed can most easily be found using the relationship

where the radius of the reel is given to be 4.50 cm; thus,

10.20

Problem-Solving Strategy for Rotational Kinematics

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved. Rotation must
be involved, but without the need to consider forces or masses that affect the motion.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the
situation is useful.

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be

useful to think in terms of a translational analog because by now you are familiar with such motion.
5. Substitute the known values along with their units into the appropriate equation, and obtain numerical

solutions complete with units. Be sure to use units of radians for angles.
6. Check your answer to see if it is reasonable: Does your answer make sense?
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Note again that radians must always be used in any calculation relating linear and angular quantities. Also, because
radians are dimensionless, we have .

Solution for (c)

Here, we are asked to find the number of revolutions. Because , we can find the number of
revolutions by finding in radians. We are given and , and we know is zero, so that can be obtained using

.

Converting radians to revolutions gives

Solution for (d)

The number of meters of fishing line is , which can be obtained through its relationship with :

Discussion

This example illustrates that relationships among rotational quantities are highly analogous to those among linear
quantities. We also see in this example how linear and rotational quantities are connected. The answers to the
questions are realistic. After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is 2100 rpm.
(No wonder reels sometimes make high-pitched sounds.) The amount of fishing line played out is 9.90 m, about
right for when the big fish bites.

FIGURE 10.7 Fishing line coming off a rotating reel moves linearly. Example 10.3 and Example 10.4 consider relationships between
rotational and linear quantities associated with a fishing reel.

EXAMPLE 10.4

Calculating the Duration When the Fishing Reel Slows Down and Stops
Now let us consider what happens if the fisherman applies a brake to the spinning reel, achieving an angular
acceleration of . How long does it take the reel to come to a stop?

Strategy

We are asked to find the time for the reel to come to a stop. The initial and final conditions are different from those
in the previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is

and the final angular velocity is zero. The angular acceleration is given to be .
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Examining the available equations, we see all quantities but t are known in making it easiest to use
this equation.

Solution

The equation states

We solve the equation algebraically for t, and then substitute the known values as usual, yielding

Discussion

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time
to stop the reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the
accelerations involved, and fishermen often let the fish swim for a while before applying brakes on the reel. A tired
fish will be slower, requiring a smaller acceleration.

EXAMPLE 10.5

Calculating the Slow Acceleration of Trains and Their Wheels
Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius
wheels an angular acceleration of . After the wheels have made 200 revolutions (assume no slippage):
(a) How far has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear
velocity of the train?

Strategy

In part (a), we are asked to find , and in (b) we are asked to find and . We are given the number of revolutions ,
the radius of the wheels , and the angular acceleration .

Solution for (a)

The distance is very easily found from the relationship between distance and rotation angle:

Solving this equation for yields

Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a
relationship between linear and rotational quantities:

Now we can substitute the known values into to find the distance the train moved down the track:

Solution for (b)

We cannot use any equation that incorporates to find , because the equation would have at least two unknown
values. The equation will work, because we know the values for all variables except :

Taking the square root of this equation and entering the known values gives
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We can find the linear velocity of the train, , through its relationship to :

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. Figure 10.8
shows a fly on the edge of a rotating microwave oven plate. The example below calculates the total distance it
travels.

FIGURE 10.8 The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

EXAMPLE 10.6

Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven Plate
A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the
microwave and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m
and rotates at 6.0 rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the
start-up and slow-down times.)

Strategy

First, find the total number of revolutions , and then the linear distance traveled. can be used to find
because is given to be 6.0 rpm.

Solution

Entering known values into gives

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like from an angular
quantity like :

Now, using the relationship between and , we can determine the distance traveled:
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Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually
zero for complete revolutions because they bring the fly back to its original position. The distinction between total
distance traveled and displacement was first noted in One-Dimensional Kinematics.

CHECK YOUR UNDERSTANDING

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws
of physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)
Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With
kinematics, we can describe many things to great precision but kinematics does not consider causes. For example, a
large angular acceleration describes a very rapid change in angular velocity without any consideration of its cause.

10.3 Dynamics of Rotational Motion: Rotational Inertia
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the relationship between force, mass and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and

angular acceleration.

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular
velocity as seen in Figure 10.9. In fact, your intuition is reliable in predicting many of the factors that are involved.
For example, we know that a door opens slowly if we push too close to its hinges. Furthermore, we know that the
more massive the door, the more slowly it opens. The first example implies that the farther the force is applied from
the pivot, the greater the angular acceleration; another implication is that angular acceleration is inversely
proportional to mass. These relationships should seem very similar to the familiar relationships among force, mass,
and acceleration embodied in Newton’s second law of motion. There are, in fact, precise rotational analogs to both
force and mass.

FIGURE 10.9 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more
massive the wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if
we exert a force on a point mass that is at a distance from a pivot point, as shown in Figure 10.10. Because
the force is perpendicular to , an acceleration is obtained in the direction of . We can rearrange this
equation such that and then look for ways to relate this expression to expressions for rotational quantities.
We note that , and we substitute this expression into , yielding

Recall that torque is the turning effectiveness of a force. In this case, because is perpendicular to , torque is
simply . So, if we multiply both sides of the equation above by , we get torque on the left-hand side. That is,

10.40
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or

This last equation is the rotational analog of Newton’s second law ( ), where torque is analogous to force,
angular acceleration is analogous to translational acceleration, and is analogous to mass (or inertia). The
quantity is called the rotational inertia or moment of inertia of a point mass a distance from the center of
rotation.

FIGURE 10.10 An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal
force. A force is applied to the object perpendicular to the radius , causing it to accelerate about the pivot point. The force is kept
perpendicular to .

Rotational Inertia and Moment of Inertia

Before we can consider the rotation of anything other than a point mass like the one in Figure 10.10, we must
extend the idea of rotational inertia to all types of objects. To expand our concept of rotational inertia, we define the
moment of inertia of an object to be the sum of for all the point masses of which it is composed. That is,

. Here is analogous to in translational motion. Because of the distance , the moment of inertia for
any object depends on the chosen axis. Actually, calculating is beyond the scope of this text except for one simple
case—that of a hoop, which has all its mass at the same distance from its axis. A hoop’s moment of inertia around its
axis is therefore , where is its total mass and its radius. (We use and for an entire object to
distinguish them from and for point masses.) In all other cases, we must consult Figure 10.11 (note that the
table is piece of artwork that has shapes as well as formulae) for formulas for that have been derived from
integration over the continuous body. Note that has units of mass multiplied by distance squared ( ), as we
might expect from its definition.

The general relationship among torque, moment of inertia, and angular acceleration is

or

where net is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques
exerted by forces in the plane of the rotation. Such torques are either positive or negative and add like ordinary
numbers. The relationship in is the rotational analog to Newton’s second law and is very generally
applicable. This equation is actually valid for any torque, applied to any object, relative to any axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child
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Making Connections: Rotational Motion Dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is
concerned with force and mass and their effects on motion. For rotational motion, we will find direct analogs to
force and mass that behave just as we would expect from our earlier experiences.
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pushes on a merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower
it accelerates for the same torque. The basic relationship between moment of inertia and angular acceleration is
that the larger the moment of inertia, the smaller is the angular acceleration. But there is an additional twist. The
moment of inertia depends not only on the mass of an object, but also on its distribution of mass relative to the axis
around which it rotates. For example, it will be much easier to accelerate a merry-go-round full of children if they
stand close to its axis than if they all stand at the outer edge. The mass is the same in both cases, but the moment of
inertia is much larger when the children are at the edge.

Take-Home Experiment

Cut out a circle that has about a 10 cm radius from stiff cardboard. Near the edge of the circle, write numbers 1
to 12 like hours on a clock face. Position the circle so that it can rotate freely about a horizontal axis through its
center, like a wheel. (You could loosely nail the circle to a wall.) Hold the circle stationary and with the number
12 positioned at the top, attach a lump of blue putty (sticky material used for fixing posters to walls) at the
number 3. How large does the lump need to be to just rotate the circle? Describe how you can change the
moment of inertia of the circle. How does this change affect the amount of blue putty needed at the number 3 to
just rotate the circle? Change the circle’s moment of inertia and then try rotating the circle by using different
amounts of blue putty. Repeat this process several times.

Problem-Solving Strategy for Rotational Dynamics

1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch
of the situation.

2. Determine the system of interest.
3. Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.
4. Apply , the rotational equivalent of Newton’s second law, to solve the problem. Care

must be taken to use the correct moment of inertia and to consider the torque about the point of rotation.
5. As always, check the solution to see if it is reasonable.

Making Connections

In statics, the net torque is zero, and there is no angular acceleration. In rotational motion, net torque is the
cause of angular acceleration, exactly as in Newton’s second law of motion for rotation.
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EXAMPLE 10.7

Calculating the Effect of Mass Distribution on a Merry-Go-Round
Consider the father pushing a playground merry-go-round in Figure 10.12. He exerts a force of 250 N at the edge of
the 50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no
one is on the merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-
go-round itself to be a uniform disk with negligible retarding friction.

FIGURE 10.11 Some rotational inertias.
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FIGURE 10.12 A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum torque.

Strategy

Angular acceleration is given directly by the expression :

To solve for , we must first calculate the torque (which is the same in both cases) and moment of inertia (which
is greater in the second case). To find the torque, we note that the applied force is perpendicular to the radius and
friction is negligible, so that

Solution for (a)

The moment of inertia of a solid disk about this axis is given in Figure 10.11 to be

where and , so that

Now, after we substitute the known values, we find the angular acceleration to be

Solution for (b)

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater
when the child is on the merry-go-round. To find the total moment of inertia , we first find the child’s moment of
inertia by considering the child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same
axis). To justify this sum to yourself, examine the definition of :

Substituting known values into the equation for gives

Discussion

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as
expected. The angular accelerations found are quite large, partly due to the fact that friction was considered to be
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negligible. If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an
angular velocity of 13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per
second, these angular velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at
about 50 km/h in the first case. Summer Olympics, here he comes! Confirmation of these numbers is left as an
exercise for the reader.

CHECK YOUR UNDERSTANDING

Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities
that depend on only one factor. For example, mass is related solely to the numbers of atoms of various types in an
object. Are torque and moment of inertia similarly simple?
Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia
depends on both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these
rotational quantities depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Derive the equation for rotational work.
• Calculate rotational kinetic energy.
• Demonstrate the Law of Conservation of Energy.

In this module, we will learn about work and energy associated with rotational motion. Figure 10.13 shows a worker
using an electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of
steel are pared from the pole. The stone continues to turn even after the motor is turned off, but it is eventually
brought to a stop by friction. Clearly, the motor had to work to get the stone spinning. This work went into heat, light,
sound, vibration, and considerable rotational kinetic energy.

FIGURE 10.13 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light,
sound, and vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular
Motion and Gravitation for translational motion, and we can build on that knowledge when considering work done in
rotational motion. The simplest rotational situation is one in which the net force is exerted perpendicular to the
radius of a disk (as shown in Figure 10.14) and remains perpendicular as the disk starts to rotate. The force is
parallel to the displacement, and so the net work done is the product of the force times the arc length traveled:

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the
equation by , and gather terms:

We recognize that and , so that
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This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as
force multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation

is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first
step is to note that , so that

FIGURE 10.14 The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus
. The net work goes into rotational kinetic energy.

Now, we solve one of the rotational kinematics equations for . We start with the equation

Next, we solve for :

Substituting this into the equation for net and gathering terms yields

This equation is the work-energy theorem for rotational motion only. As you may recall, net work changes the
kinetic energy of a system. Through an analogy with translational motion, we define the term to be
rotational kinetic energy for an object with a moment of inertia and an angular velocity :

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with being
analogous to and to . Rotational kinetic energy has important effects. Flywheels, for example, can be used to
store large amounts of rotational kinetic energy in a vehicle, as seen in Figure 10.15.
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Making Connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first
presented in Uniform Circular Motion and Gravitation.
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FIGURE 10.15 Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large
flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into . It can also convert
translational kinetic energy, when the bus stops, into . The flywheel’s energy can then be used to accelerate, to go up another hill, or
to keep the bus from slowing down due to friction.

EXAMPLE 10.8

Calculating the Work and Energy for Spinning a Grindstone
Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of
a revolution as shown in Figure 10.16. In this example, we verify that the work done by the torque she exerts equals
the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of

? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and
the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c)
What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation . We have enough information to calculate the torque
and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic
relationships. In the last part, we can calculate the rotational kinetic energy from its expression in .

Solution for (a)

The net work is expressed in the equation

where net is the applied force multiplied by the radius because there is no retarding friction, and the force is
perpendicular to . The angle is given. Substituting the given values in the equation above yields

Noting that ,

FIGURE 10.16 A large grindstone is given a spin by a person grasping its outer edge.
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Solution for (b)

To find from the given information requires more than one step. We start with the kinematic relationship in the
equation

Note that because we start from rest. Taking the square root of the resulting equation gives

Now we need to find . One possibility is

where the torque is

The formula for the moment of inertia for a disk is found in Figure 10.11:

Substituting the values of torque and moment of inertia into the expression for , we obtain

Now, substitute this value and the given value for into the above expression for :

Solution for (c)

The final rotational kinetic energy is

Both and were found above. Thus,

Discussion

The final rotational kinetic energy equals the work done by the torque, which confirms that the work done went into
rotational kinetic energy. We could, in fact, have used an expression for energy instead of a kinematic relation to
solve part (b). We will do this in later examples.

Helicopter pilots are quite familiar with rotational kinetic energy. They know, for example, that a point of no return
will be reached if they allow their blades to slow below a critical angular velocity during flight. The blades lose lift,
and it is impossible to immediately get the blades spinning fast enough to regain it. Rotational kinetic energy must
be supplied to the blades to get them to rotate faster, and enough energy cannot be supplied in time to avoid a
crash. Because of weight limitations, helicopter engines are too small to supply both the energy needed for lift and
to replenish the rotational kinetic energy of the blades once they have slowed down. The rotational kinetic energy is
put into them before takeoff and must not be allowed to drop below this crucial level. One possible way to avoid a
crash is to use the gravitational potential energy of the helicopter to replenish the rotational kinetic energy of the
blades by losing altitude and aligning the blades so that the helicopter is spun up in the descent. Of course, if the
helicopter’s altitude is too low, then there is insufficient time for the blade to regain lift before reaching the ground.
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EXAMPLE 10.9

Calculating Helicopter Energies
A typical small rescue helicopter, similar to the one in Figure 10.17, has four blades, each is 4.00 m long and has a
mass of 50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to
their length. The helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the
blades when they rotate at 300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at
20.0 m/s, and compare it with the rotational energy in the blades. (c) To what height could the helicopter be raised if
all of the rotational kinetic energy could be used to lift it?

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem
relates to the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential
energy.

Solution for (a)

The rotational kinetic energy is

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find
. The angular velocity is

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in Figure 10.11. The total
is four times this moment of inertia, because there are four blades. Thus,

Entering and into the expression for rotational kinetic energy gives

Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation. Entering the given values of
mass and velocity, we obtain

Problem-Solving Strategy for Rotational Energy

1. Determine that energy or work is involved in the rotation.
2. Determine the system of interest. A sketch usually helps.
3. Analyze the situation to determine the types of work and energy involved.
4. For closed systems, mechanical energy is conserved. That is, Note that and

may each include translational and rotational contributions.
5. For open systems, mechanical energy may not be conserved, and other forms of energy (referred to

previously as ), such as heat transfer, may enter or leave the system. Determine what they are, and
calculate them as necessary.

6. Eliminate terms wherever possible to simplify the algebra.
7. Check the answer to see if it is reasonable.
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To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this
height, we equate those two energies:

or

We now solve for and substitute known values into the resulting equation

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic
energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to
which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the
amount of rotational kinetic energy in the blades.

FIGURE 10.17 The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be
put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously
provide lift and put significant rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue
Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown.
(credit: 111 Emergency, Flickr)
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How Thick Is the Soup? Or Why Don’t All Objects Roll Downhill at the Same Rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast,
the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why
should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest.
Each can starting from rest means each starts with the same gravitational potential energy , which is
converted entirely to , provided each rolls without slipping. , however, can take the form of or ,
and total is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for
translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate,
whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can’s original
gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in Figure 10.18.

FIGURE 10.18 Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but
just slides down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the
incline without slipping. The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but
not the thin soup). The third can contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the
initial PE for rotational KE, leaving less for translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the
change in kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation
of energy gives

More specifically,

or

So, the initial is divided between translational kinetic energy and rotational kinetic energy; and the greater is,
the less energy goes into translation. If the can slides down without friction, then and all the energy goes into
translation; thus, the can goes faster.

Making Connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of .
Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.
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Take-Home Experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an
inclined plane and explain why. See if your prediction is correct. You could also do this experiment by collecting
several empty cylindrical containers of the same size and filling them with different materials such as wet or dry
sand.
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EXAMPLE 10.10

Calculating the Speed of a Cylinder Rolling Down an Incline
Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a
mass of 0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in
terms of translational quantities to end up with as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

Before we can solve for , we must get an expression for from Figure 10.11. Because and are related (note
here that the cylinder is rolling without slipping), we must also substitute the relationship into the
expression. These substitutions yield

Interestingly, the cylinder’s radius and mass cancel, yielding

Solving algebraically, the equation for the final velocity gives

Substituting known values into the resulting expression yields

Discussion

Because and cancel, the result is valid for any solid cylinder, implying that all solid cylinders will
roll down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what
Galileo actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid
without friction down the incline without rolling, then the entire gravitational potential energy would go into
translational kinetic energy. Thus, and , which is 22% greater than . That is, the
cylinder would go faster at the bottom.

CHECK YOUR UNDERSTANDING

Analogy of Rotational and Translational Kinetic Energy Is rotational kinetic energy completely analogous to
translational kinetic energy? What, if any, are their differences? Give an example of each type of kinetic energy.
Solution
Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with
the coordinated (non-random) movement of mass relative to some reference frame. The only difference between
rotational and translational kinetic energy is that translational is straight line motion while rotational is not. An
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example of both kinetic and translational kinetic energy is found in a bike tire while being ridden down a bike path.
The rotational motion of the tire means it has rotational kinetic energy while the movement of the bike along the
path means the tire also has translational kinetic energy. If you were to lift the front wheel of the bike and spin it
while the bike is stationary, then the wheel would have only rotational kinetic energy relative to the Earth.

10.5 Angular Momentum and Its Conservation
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Understand the analogy between angular momentum and linear momentum.
• Observe the relationship between torque and angular momentum.
• Apply the law of conservation of angular momentum.

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to
spin faster and faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster?
Questions like these have answers based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite
reasonable, then, to define angular momentum as

This equation is an analog to the definition of linear momentum as . Units for linear momentum are
while units for angular momentum are . As we would expect, an object that has a large moment of inertia

, such as Earth, has a very large angular momentum. An object that has a large angular velocity , such as a
centrifuge, also has a rather large angular momentum.

EXAMPLE 10.11

Calculating Angular Momentum of the Earth
Strategy
No information is given in the statement of the problem; so we must look up pertinent data before we can calculate

. First, according to Figure 10.11, the formula for the moment of inertia of a sphere is

so that

Earth’s mass is and its radius is . The Earth’s angular velocity is, of course,
exactly one revolution per day, but we must covert to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for and converting to radians per second gives

10.90

Making Connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and
Gravitation. It has the same implications in terms of carrying rotation forward, and it is conserved when the net
external torque is zero. Angular momentum, like linear momentum, is also a property of the atoms and
subatomic particles.
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Substituting rad for rev and for 1 day gives

Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is
approximate, because we have assumed a constant density for Earth in order to estimate its moment of inertia.

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is
greater than opposing torques, then the rotation accelerates, and angular momentum increases. The greater the net
torque, the more rapid the increase in . The relationship between torque and angular momentum is

This expression is exactly analogous to the relationship between force and linear momentum, . The
equation is very fundamental and broadly applicable. It is, in fact, the rotational form of Newton’s
second law.

EXAMPLE 10.12

Calculating the Torque Putting Angular Momentum Into a Rotating Food Tray
Figure 10.19 shows a rotating food tray, often called a lazy Susan, being turned by a person in quest of sustenance.
Suppose the person exerts a 2.50 N force perpendicular to the lazy Susan’s 0.260-m radius for 0.150 s. (a) What is
the final angular momentum of the lazy Susan if it starts from rest, assuming friction is negligible? (b) What is the
final angular velocity of the lazy Susan, given that its mass is 4.00 kg and assuming its moment of inertia is that of a
disk?

FIGURE 10.19 A partygoer exerts a torque on a lazy Susan to make it rotate. The equation gives the relationship between
torque and the angular momentum produced.

Strategy

We can find the angular momentum by solving for , and using the given information to calculate the
torque. The final angular momentum equals the change in angular momentum, because the lazy Susan starts from
rest. That is, . To find the final velocity, we must calculate from the definition of in .

Solution for (a)

Solving for gives
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Because the force is perpendicular to , we see that , so that

Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

Solving for and substituting the formula for the moment of inertia of a disk into the resulting equation gives

And substituting known values into the preceding equation yields

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and
time. The final angular velocity is equivalent to one revolution in 8.71 s (determination of the time period is left as an
exercise for the reader), which is about right for a lazy Susan.

EXAMPLE 10.13

Calculating the Torque in a Kick
The person whose leg is shown in Figure 10.20 kicks his leg by exerting a 2000-N force with his upper leg muscle.
The effective perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is , (a)
find the angular acceleration of the leg. (b) Neglecting the gravitational force, what is the rotational kinetic energy of
the leg after it has rotated through (1.00 rad)?

FIGURE 10.20 The muscle in the upper leg gives the lower leg an angular acceleration and imparts rotational kinetic energy to it by exerting
a torque about the knee. is a vector that is perpendicular to . This example examines the situation.

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or . The
moment of inertia is given and the torque can be found easily from the given force and perpendicular lever arm.
Once the angular acceleration is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration is
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Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create
a torque, the net torque is thus

Substituting this value for the torque and the given value for the moment of inertia into the expression for gives

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

or

because the initial angular velocity is zero. The kinetic energy of rotation is

so it is most convenient to use the value of just found and the given value for the moment of inertia. The kinetic
energy is then

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can
be neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath
the pivot in the knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than
that created by the weight of the lower leg as it rotates. The rotational kinetic energy given to the lower leg is
enough that it could give a ball a significant velocity by transferring some of this energy in a kick.

Conservation of Angular Momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, . This
equation means that, to change angular momentum, a torque must act over some period of time. Because Earth has
a large angular momentum, a large torque acting over a long time is needed to change its rate of spin. So what
external torques are there? Tidal friction exerts torque that is slowing Earth’s rotation, but tens of millions of years
must pass before the change is very significant. Recent research indicates the length of the day was 18 h some 900
million years ago. Only the tides exert significant retarding torques on Earth, and so it will continue to spin, although
ever more slowly, for many billions of years.
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Making Connections: Conservation Laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another
sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just
as linear momentum is conserved when the net external force is zero.
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What we have here is, in fact, another conservation law. If the net torque is zero, then angular momentum is
constant or conserved. We can see this rigorously by considering for the situation in which the net
torque is zero. In that case,

implying that

If the change in angular momentum is zero, then the angular momentum is constant; thus,

or

These expressions are the law of conservation of angular momentum. Conservation laws are as scarce as they are
important.

An example of conservation of angular momentum is seen in Figure 10.21, in which an ice skater is executing a spin.
The net torque on her is very close to zero, because there is relatively little friction between her skates and the ice
and because the friction is exerted very close to the pivot point. (Both and are small, and so is negligibly
small.) Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of
spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is
that her angular momentum is constant, so that

Expressing this equation in terms of the moment of inertia,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia.
Because is smaller, the angular velocity must increase to keep the angular momentum constant. The change
can be dramatic, as the following example shows.

FIGURE 10.21 (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because
the net torque on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her
moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.

EXAMPLE 10.14

Calculating the Angular Momentum of a Spinning Skater
Suppose an ice skater, such as the one in Figure 10.21, is spinning at 0.800 rev/ s with her arms extended. She has a
moment of inertia of with her arms extended and of with her arms close to her body.
(These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular
velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and
after she does this?

10.108

10.109

10.110

10.111

10.112

10.113

10.5 • Angular Momentum and Its Conservation 419



Strategy

In the first part of the problem, we are looking for the skater’s angular velocity after she has pulled in her arms.
To find this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial
angular velocity are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic
energy given by

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in is
applicable. Thus,

or

Solving for and substituting known values into the resulting equation gives

Solution for (b)

Rotational kinetic energy is given by

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

The final rotational kinetic energy is

Substituting known values into this equation gives

Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class
skaters can achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial
kinetic energy. The increase in rotational kinetic energy comes from work done by the skater in pulling in her arms.
This work is internal work that depletes some of the skater’s food energy.

There are several other examples of objects that increase their rate of spin because something reduced their
moment of inertia. Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the
radius of rotation narrows, even in a local region, angular velocity increases, sometimes to the furious level of a
tornado. Earth is another example. Our planet was born from a huge cloud of gas and dust, the rotation of which
came from turbulence in an even larger cloud. Gravitational forces caused the cloud to contract, and the rotation
rate increased as a result. (See Figure 10.22.)

10.114

10.115

10.116

10.117

10.118

10.119

10.120

10.121

420 10 • Rotational Motion and Angular Momentum

Access for free at openstax.org



FIGURE 10.22 The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the
planets are in the same direction as the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the
environment as its foot pushes off the ground. Astronauts floating in space aboard the International Space Station
have no angular momentum relative to the inside of the ship if they are motionless. Their bodies will continue to
have this zero value no matter how they twist about as long as they do not give themselves a push off the side of the
vessel.

CHECK YOUR UNDERSTANDING

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?
Solution
Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different
units and are not directly inter-convertible like forms of energy are.

10.6 Collisions of Extended Bodies in Two Dimensions
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Observe collisions of extended bodies in two dimensions.
• Examine collision at the point of percussion.

Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear
momentum and energy have been imparted to the pins. (See Figure 10.23). Many collisions involve angular
momentum. Cars, for example, may spin and collide on ice or a wet surface. Baseball pitchers throw curves by
putting spin on the baseball. A tennis player can put a lot of top spin on the tennis ball which causes it to dive down
onto the court once it crosses the net. We now take a brief look at what happens when objects that can rotate
collide.

Consider the relatively simple collision shown in Figure 10.24, in which a disk strikes and adheres to an initially
motionless stick nailed at one end to a frictionless surface. After the collision, the two rotate about the nail. There is
an unbalanced external force on the system at the nail. This force exerts no torque because its lever arm is zero.
Angular momentum is therefore conserved in the collision. Kinetic energy is not conserved, because the collision is
inelastic. It is possible that momentum is not conserved either because the force at the nail may have a component
in the direction of the disk’s initial velocity. Let us examine a case of rotation in a collision in Example 10.15.
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FIGURE 10.23 The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)

FIGURE 10.24 (a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and adheres to it,
and they rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because the surface is
frictionless and the unbalanced external force at the nail exerts no torque.

EXAMPLE 10.15

Rotation in a Collision
Suppose the disk in Figure 10.24 has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick
that is 1.20 m long and 2.00 kg.

(a) What is the angular velocity of the two after the collision?

(b) What is the kinetic energy before and after the collision?

(c) What is the total linear momentum before and after the collision?

Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is
, we can solve for angular velocity.

Solution for (a)

Conservation of angular momentum states

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the
pivot point. The initial angular momentum of the system of stick-disk is that of the disk just before it strikes the stick.
That is,

where is the moment of inertia of the disk and is its angular velocity around the pivot point. Now,
(taking the disk to be approximately a point mass) and , so that

After the collision,
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It is that we wish to find. Conservation of angular momentum gives

Rearranging the equation yields

where is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments
of inertia about the nail. Figure 10.11 gives the formula for a rod rotating around one end to be . Thus,

Entering known values in this equation yields,

The value of is now entered into the expression for , which yields

Strategy for (b)

The kinetic energy before the collision is the incoming disk’s translational kinetic energy, and after the collision, it is
the rotational kinetic energy of the two stuck together.

Solution for (b)

First, we calculate the translational kinetic energy by entering given values for the mass and speed of the incoming
disk.

After the collision, the rotational kinetic energy can be found because we now know the final angular velocity and
the final moment of inertia. Thus, entering the values into the rotational kinetic energy equation gives

Strategy for (c)

The linear momentum before the collision is that of the disk. After the collision, it is the sum of the disk’s
momentum and that of the center of mass of the stick.

Solution of (c)

Before the collision, then, linear momentum is

After the collision, the disk and the stick’s center of mass move in the same direction. The total linear momentum is
that of the disk moving at a new velocity plus that of the stick’s center of mass,

which moves at half this speed because . Thus,
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Gathering similar terms in the equation yields,

so that

Substituting known values into the equation,

Discussion

First note that the kinetic energy is less after the collision, as predicted, because the collision is inelastic. More
surprising is that the momentum after the collision is actually greater than before the collision. This result can be
understood if you consider how the nail affects the stick and vice versa. Apparently, the stick pushes backward on
the nail when first struck by the disk. The nail’s reaction (consistent with Newton’s third law) is to push forward on
the stick, imparting momentum to it in the same direction in which the disk was initially moving, thereby increasing
the momentum of the system.

The above example has other implications. For example, what would happen if the disk hit very close to the nail?
Obviously, a force would be exerted on the nail in the forward direction. So, when the stick is struck at the end
farthest from the nail, a backward force is exerted on the nail, and when it is hit at the end nearest the nail, a
forward force is exerted on the nail. Thus, striking it at a certain point in between produces no force on the nail. This
intermediate point is known as the percussion point.

An analogous situation occurs in tennis as seen in Figure 10.25. If you hit a ball with the end of your racquet, the
handle is pulled away from your hand. If you hit a ball much farther down, for example, on the shaft of the racquet,
the handle is pushed into your palm. And if you hit the ball at the racquet’s percussion point (what some people call
the “sweet spot”), then little or no force is exerted on your hand, and there is less vibration, reducing chances of a
tennis elbow. The same effect occurs for a baseball bat.
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FIGURE 10.25 A disk hitting a stick is compared to a tennis ball being hit by a racquet. (a) When the ball strikes the racquet near the end, a
backward force is exerted on the hand. (b) When the racquet is struck much farther down, a forward force is exerted on the hand. (c) When
the racquet is struck at the percussion point, no force is delivered to the hand.

CHECK YOUR UNDERSTANDING

Is rotational kinetic energy a vector? Justify your answer.
Solution
No, energy is always scalar whether motion is involved or not. No form of energy has a direction in space and you
can see that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is
independent of the direction of motion.
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10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
LEARNING OBJECTIVES
By the end of this section, you will be able to:

• Describe the right-hand rule to find the direction of angular velocity, momentum, and torque.
• Explain the gyroscopic effect.
• Study how Earth acts like a gigantic gyroscope.

Angular momentum is a vector and, therefore, has direction as well as magnitude. Torque affects both the direction
and the magnitude of angular momentum. What is the direction of the angular momentum of a rotating object like
the disk in Figure 10.26? The figure shows the right-hand rule used to find the direction of both angular momentum
and angular velocity. Both and are vectors—each has direction and magnitude. Both can be represented by
arrows. The right-hand rule defines both to be perpendicular to the plane of rotation in the direction shown. Because
angular momentum is related to angular velocity by , the direction of is the same as the direction of .
Notice in the figure that both point along the axis of rotation.

FIGURE 10.26 Figure (a) shows a disk is rotating counterclockwise when viewed from above. Figure (b) shows the right-hand rule. The
direction of angular velocity size and angular momentum are defined to be the direction in which the thumb of your right hand points
when you curl your fingers in the direction of the disk’s rotation as shown.

Now, recall that torque changes angular momentum as expressed by

This equation means that the direction of is the same as the direction of the torque that creates it. This result
is illustrated in Figure 10.27, which shows the direction of torque and the angular momentum it creates.

Let us now consider a bicycle wheel with a couple of handles attached to it, as shown in Figure 10.28. (This device is
popular in demonstrations among physicists, because it does unexpected things.) With the wheel rotating as shown,
its angular momentum is to the woman's left. Suppose the person holding the wheel tries to rotate it as in the figure.
Her natural expectation is that the wheel will rotate in the direction she pushes it—but what happens is quite
different. The forces exerted create a torque that is horizontal toward the person, as shown in Figure 10.28(a). This
torque creates a change in angular momentum in the same direction, perpendicular to the original angular
momentum , thus changing the direction of but not the magnitude of . Figure 10.28 shows how and add,
giving a new angular momentum with direction that is inclined more toward the person than before. The axis of the
wheel has thus moved perpendicular to the forces exerted on it, instead of in the expected direction.

10.138
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FIGURE 10.27 In figure (a), the torque is perpendicular to the plane formed by and and is the direction your right thumb would point to
if you curled your fingers in the direction of . Figure (b) shows that the direction of the torque is the same as that of the angular
momentum it produces.

FIGURE 10.28 In figure (a), a person holding the spinning bike wheel lifts it with her right hand and pushes down with her left hand in an
attempt to rotate the wheel. This action creates a torque directly toward her. This torque causes a change in angular momentum in
exactly the same direction. Figure (b) shows a vector diagram depicting how and add, producing a new angular momentum pointing
more toward the person. The wheel moves toward the person, perpendicular to the forces she exerts on it.

This same logic explains the behavior of gyroscopes. Figure 10.29 shows the two forces acting on a spinning
gyroscope. The torque produced is perpendicular to the angular momentum, thus the direction of the torque is
changed, but not its magnitude. The gyroscope precesses around a vertical axis, since the torque is always
horizontal and perpendicular to . If the gyroscope is not spinning, it acquires angular momentum in the direction of
the torque ( ), and it rotates around a horizontal axis, falling over just as we would expect.

Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North
Star. But Earth is slowly precessing (once in about 26,000 years) due to the torque of the Sun and the Moon on its
nonspherical shape.

10.7 • Gyroscopic Effects: Vector Aspects of Angular Momentum 427



FIGURE 10.29 As seen in figure (a), the forces on a spinning gyroscope are its weight and the supporting force from the stand. These forces
create a horizontal torque on the gyroscope, which create a change in angular momentum that is also horizontal. In figure (b), and

add to produce a new angular momentum with the same magnitude, but different direction, so that the gyroscope precesses in the
direction shown instead of falling over.

CHECK YOUR UNDERSTANDING

Rotational kinetic energy is associated with angular momentum? Does that mean that rotational kinetic energy is a
vector?
Solution
No, energy is always a scalar whether motion is involved or not. No form of energy has a direction in space and you
can see that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is
independent of the direction of motion.
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Glossary
angular acceleration the rate of change of angular

velocity with time
angular momentum the product of moment of inertia

and angular velocity
change in angular velocity the difference between

final and initial values of angular velocity
kinematics of rotational motion describes the

relationships among rotation angle, angular velocity,
angular acceleration, and time

law of conservation of angular momentum angular
momentum is conserved, i.e., the initial angular
momentum is equal to the final angular momentum
when no external torque is applied to the system

moment of inertia mass times the square of
perpendicular distance from the rotation axis; for a
point mass, it is and, because any object
can be built up from a collection of point masses,
this relationship is the basis for all other moments
of inertia

right-hand rule direction of angular velocity ω and
angular momentum L in which the thumb of your
right hand points when you curl your fingers in the
direction of the disk’s rotation

rotational inertia resistance to change of rotation.
The more rotational inertia an object has, the harder
it is to rotate

rotational kinetic energy the kinetic energy due to
the rotation of an object. This is part of its total
kinetic energy

tangential acceleration the acceleration in a
direction tangent to the circle at the point of interest
in circular motion

torque the turning effectiveness of a force
work-energy theorem if one or more external forces

act upon a rigid object, causing its kinetic energy to
change from to , then the work done
by the net force is equal to the change in kinetic
energy

Section Summary
10.1 Angular Acceleration

• Uniform circular motion is the motion with a
constant angular velocity .

• In non-uniform circular motion, the velocity
changes with time and the rate of change of
angular velocity (i.e. angular acceleration) is

.
• Linear or tangential acceleration refers to changes

in the magnitude of velocity but not its direction,
given as .

• For circular motion, note that , so that

• The radius r is constant for circular motion, and so
. Thus,

• By definition, . Thus,

or

10.2 Kinematics of Rotational Motion

• Kinematics is the description of motion.
• The kinematics of rotational motion describes the

relationships among rotation angle, angular
velocity, angular acceleration, and time.

• Starting with the four kinematic equations we
developed in the One-Dimensional Kinematics, we

can derive the four rotational kinematic equations
(presented together with their translational
counterparts) seen in Table 10.2.

• In these equations, the subscript 0 denotes initial
values ( and are initial values), and the average
angular velocity and average velocity are
defined as follows:

10.3 Dynamics of Rotational Motion:
Rotational Inertia

• The farther the force is applied from the pivot, the
greater is the angular acceleration; angular
acceleration is inversely proportional to mass.

• If we exert a force on a point mass that is at a
distance from a pivot point and because the
force is perpendicular to , an acceleration

is obtained in the direction of . We can
rearrange this equation such that

and then look for ways to relate this expression to
expressions for rotational quantities. We note that

, and we substitute this expression into
, yielding

• Torque is the turning effectiveness of a force. In
this case, because is perpendicular to , torque
is simply . If we multiply both sides of the
equation above by , we get torque on the left-
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hand side. That is,

or

• The moment of inertia of an object is the sum of
for all the point masses of which it is

composed. That is,

• The general relationship among torque, moment of
inertia, and angular acceleration is

or

10.4 Rotational Kinetic Energy: Work and
Energy Revisited

• The rotational kinetic energy for an object
with a moment of inertia and an angular velocity

is given by

• Helicopters store large amounts of rotational
kinetic energy in their blades. This energy must be
put into the blades before takeoff and maintained
until the end of the flight. The engines do not have
enough power to simultaneously provide lift and
put significant rotational energy into the blades.

• Work and energy in rotational motion are
completely analogous to work and energy in
translational motion.

• The equation for the work-energy theorem for
rotational motion is,

10.5 Angular Momentum and Its
Conservation

• Every rotational phenomenon has a direct
translational analog , likewise angular momentum

can be defined as
• This equation is an analog to the definition of

linear momentum as . The relationship
between torque and angular momentum is

• Angular momentum, like energy and linear
momentum, is conserved. This universally
applicable law is another sign of underlying unity
in physical laws. Angular momentum is conserved
when net external torque is zero, just as linear
momentum is conserved when the net external
force is zero.

10.6 Collisions of Extended Bodies in Two
Dimensions

• Angular momentum is analogous to linear
momentum and is given by .

• Angular momentum is changed by torque,
following the relationship

• Angular momentum is conserved if the net torque
is zero or

. This equation is known as the
law of conservation of angular momentum, which
may be conserved in collisions.

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum

• Torque is perpendicular to the plane formed by
and and is the direction your right thumb would
point if you curled the fingers of your right hand in
the direction of . The direction of the torque is
thus the same as that of the angular momentum it
produces.

• The gyroscope precesses around a vertical axis,
since the torque is always horizontal and
perpendicular to . If the gyroscope is not
spinning, it acquires angular momentum in the
direction of the torque ( ), and it rotates
about a horizontal axis, falling over just as we
would expect.

• Earth itself acts like a gigantic gyroscope. Its
angular momentum is along its axis and points at
Polaris, the North Star.

Conceptual Questions
10.1 Angular Acceleration

1. Analogies exist between rotational and
translational physical quantities. Identify the
rotational term analogous to each of the following:
acceleration, force, mass, work, translational
kinetic energy, linear momentum, impulse.

2. Explain why centripetal acceleration changes the
direction of velocity in circular motion but not its
magnitude.

3. In circular motion, a tangential acceleration can
change the magnitude of the velocity but not its
direction. Explain your answer.
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4. Suppose a piece of food is on the edge of a rotating
microwave oven plate. Does it experience nonzero
tangential acceleration, centripetal acceleration, or
both when: (a) The plate starts to spin? (b) The
plate rotates at constant angular velocity? (c) The
plate slows to a halt?

10.3 Dynamics of Rotational Motion:
Rotational Inertia

5. The moment of inertia of a long rod spun around an
axis through one end perpendicular to its length is

. Why is this moment of inertia greater than
it would be if you spun a point mass at the
location of the center of mass of the rod (at )?
(That would be .)

6. Why is the moment of inertia of a hoop that has a
mass and a radius greater than the moment of
inertia of a disk that has the same mass and radius?
Why is the moment of inertia of a spherical shell
that has a mass and a radius greater than that
of a solid sphere that has the same mass and
radius?

7. Give an example in which a small force exerts a
large torque. Give another example in which a large
force exerts a small torque.

8. While reducing the mass of a racing bike, the
greatest benefit is realized from reducing the mass
of the tires and wheel rims. Why does this allow a
racer to achieve greater accelerations than would
an identical reduction in the mass of the bicycle’s
frame?

FIGURE 10.30 The image shows a side view of a racing
bicycle. Can you see evidence in the design of the wheels on
this racing bicycle that their moment of inertia has been
purposely reduced? (credit: Jesús Rodriguez)

9. A ball slides up a frictionless ramp. It is then rolled
without slipping and with the same initial velocity
up another frictionless ramp (with the same slope
angle). In which case does it reach a greater height,
and why?

10.4 Rotational Kinetic Energy: Work and
Energy Revisited

10. Describe the energy transformations involved
when a yo-yo is thrown downward and then
climbs back up its string to be caught in the user’s
hand.

11. What energy transformations are involved when a
dragster engine is revved, its clutch let out rapidly,
its tires spun, and it starts to accelerate forward?
Describe the source and transformation of energy
at each step.

12. The Earth has more rotational kinetic energy now
than did the cloud of gas and dust from which it
formed. Where did this energy come from?

FIGURE 10.31 An immense cloud of rotating gas and dust
contracted under the influence of gravity to form the Earth
and in the process rotational kinetic energy increased.
(credit: NASA)

10.5 Angular Momentum and Its
Conservation

13. When you start the engine of your car with the
transmission in neutral, you notice that the car
rocks in the opposite sense of the engine’s
rotation. Explain in terms of conservation of
angular momentum. Is the angular momentum of
the car conserved for long (for more than a few
seconds)?
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14. Suppose a child walks from the outer edge of a rotating
merry-go round to the inside. Does the angular velocity
of the merry-go-round increase, decrease, or remain
the same? Explain your answer.

FIGURE 10.32 A child may jump off a merry-go-round in a variety
of directions.

15. Suppose a child gets off a rotating merry-go-
round. Does the angular velocity of the merry-go-
round increase, decrease, or remain the same if:
(a) He jumps off radially? (b) He jumps backward
to land motionless? (c) He jumps straight up and
hangs onto an overhead tree branch? (d) He jumps
off forward, tangential to the edge? Explain your
answers. (Refer to Figure 10.32).

16. Helicopters have a small propeller on their tail to
keep them from rotating in the opposite direction
of their main lifting blades. Explain in terms of
Newton’s third law why the helicopter body
rotates in the opposite direction to the blades.

17. Whenever a helicopter has two sets of lifting
blades, they rotate in opposite directions (and
there will be no tail propeller). Explain why it is
best to have the blades rotate in opposite
directions.

18. Describe how work is done by a skater pulling in
her arms during a spin. In particular, identify the
force she exerts on each arm to pull it in and the
distance each moves, noting that a component of
the force is in the direction moved. Why is angular
momentum not increased by this action?

19. When there is a global heating trend on Earth, the
atmosphere expands and the length of the day
increases very slightly. Explain why the length of a
day increases.

20. Nearly all conventional piston engines have
flywheels on them to smooth out engine vibrations
caused by the thrust of individual piston firings.
Why does the flywheel have this effect?

21. Jet turbines spin rapidly. They are designed to fly
apart if something makes them seize suddenly,
rather than transfer angular momentum to the
plane’s wing, possibly tearing it off. Explain how
flying apart conserves angular momentum without
transferring it to the wing.

22. An astronaut tightens a bolt on a satellite in orbit.
He rotates in a direction opposite to that of the
bolt, and the satellite rotates in the same direction
as the bolt. Explain why. If a handhold is available
on the satellite, can this counter-rotation be
prevented? Explain your answer.

23. Competitive divers pull their limbs in and curl up
their bodies when they do flips. Just before
entering the water, they fully extend their limbs to
enter straight down. Explain the effect of both
actions on their angular velocities. Also explain
the effect on their angular momenta.

FIGURE 10.33 The diver spins rapidly when curled up and
slows when she extends her limbs before entering the water.

24. Draw a free body diagram to show how a diver
gains angular momentum when leaving the diving
board.
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25. In terms of angular momentum, what is the
advantage of giving a football or a rifle bullet a
spin when throwing or releasing it?

FIGURE 10.34 The image shows a view down the barrel of a
cannon, emphasizing its rifling. Rifling in the barrel of a
canon causes the projectile to spin just as is the case for
rifles (hence the name for the grooves in the barrel). (credit:
Elsie esq., Flickr)

10.6 Collisions of Extended Bodies in Two
Dimensions

26. Describe two different collisions—one in which
angular momentum is conserved, and the other in
which it is not. Which condition determines
whether or not angular momentum is conserved in
a collision?

27. Suppose an ice hockey puck strikes a hockey stick
that lies flat on the ice and is free to move in any
direction. Which quantities are likely to be
conserved: angular momentum, linear
momentum, or kinetic energy (assuming the puck
and stick are very resilient)?

28. While driving his motorcycle at highway speed, a
physics student notices that pulling back lightly on
the right handlebar tips the cycle to the left and
produces a left turn. Explain why this happens.

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum

29. While driving his motorcycle at highway speed, a
physics student notices that pulling back lightly on
the right handlebar tips the cycle to the left and
produces a left turn. Explain why this happens.

30. Gyroscopes used in guidance systems to indicate
directions in space must have an angular
momentum that does not change in direction. Yet
they are often subjected to large forces and
accelerations. How can the direction of their
angular momentum be constant when they are
accelerated?

Problems & Exercises
10.1 Angular Acceleration

1. At its peak, a tornado is 60.0 m in diameter and
carries 500 km/h winds. What is its angular velocity
in revolutions per second?

2. Integrated Concepts
An ultracentrifuge accelerates from rest to 100,000
rpm in 2.00 min. (a) What is its angular acceleration
in ? (b) What is the tangential acceleration of
a point 9.50 cm from the axis of rotation? (c) What
is the radial acceleration in and multiples of
of this point at full rpm?

3. Integrated Concepts
You have a grindstone (a disk) that is 90.0 kg, has a
0.340-m radius, and is turning at 90.0 rpm, and you
press a steel axe against it with a radial force of
20.0 N. (a) Assuming the kinetic coefficient of
friction between steel and stone is 0.20, calculate
the angular acceleration of the grindstone. (b) How
many turns will the stone make before coming to
rest?

4. Unreasonable Results
You are told that a basketball player spins the ball
with an angular acceleration of . (a) What
is the ball’s final angular velocity if the ball starts
from rest and the acceleration lasts 2.00 s? (b)
What is unreasonable about the result? (c) Which
premises are unreasonable or inconsistent?

10.2 Kinematics of Rotational Motion

5. With the aid of a string, a gyroscope is accelerated
from rest to 32 rad/s in 0.40 s.
(a) What is its angular acceleration in rad/s2?
(b) How many revolutions does it go through in the
process?

6. Suppose a piece of dust finds itself on a CD. If the
spin rate of the CD is 500 rpm, and the piece of dust
is 4.3 cm from the center, what is the total distance
traveled by the dust in 3 minutes? (Ignore
accelerations due to getting the CD rotating.)
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7. A gyroscope slows from an initial rate of 32.0 rad/s
at a rate of .
(a) How long does it take to come to rest?
(b) How many revolutions does it make before
stopping?

8. During a very quick stop, a car decelerates at
.

(a) What is the angular acceleration of its 0.280-m-
radius tires, assuming they do not slip on the
pavement?
(b) How many revolutions do the tires make before
coming to rest, given their initial angular velocity is

?
(c) How long does the car take to stop completely?
(d) What distance does the car travel in this time?
(e) What was the car’s initial velocity?
(f) Do the values obtained seem reasonable,
considering that this stop happens very quickly?

FIGURE 10.35 Yo-yos are amusing toys that display
significant physics and are engineered to enhance
performance based on physical laws. (credit: Beyond Neon,
Flickr)

9. Everyday application: Suppose a yo-yo has a center
shaft that has a 0.250 cm radius and that its string
is being pulled.
(a) If the string is stationary and the yo-yo
accelerates away from it at a rate of ,
what is the angular acceleration of the yo-yo?
(b) What is the angular velocity after 0.750 s if it
starts from rest?
(c) The outside radius of the yo-yo is 3.50 cm. What
is the tangential acceleration of a point on its edge?

10.3 Dynamics of Rotational Motion:
Rotational Inertia

10. This problem considers additional aspects of
example Calculating the Effect of Mass
Distribution on a Merry-Go-Round. (a) How long
does it take the father to give the merry-go-round
an angular velocity of 1.50 rad/s? (b) How many
revolutions must he go through to generate this
velocity? (c) If he exerts a slowing force of 300 N
at a radius of 1.35 m, how long would it take him
to stop them?

11. Calculate the moment of inertia of a skater given
the following information. (a) The 60.0-kg skater is
approximated as a cylinder that has a 0.110-m
radius. (b) The skater with arms extended is
approximately a cylinder that is 52.5 kg, has a
0.110-m radius, and has two 0.900-m-long arms
which are 3.75 kg each and extend straight out
from the cylinder like rods rotated about their
ends.

12. The triceps muscle in the back of the upper arm
extends the forearm. This muscle in a professional
boxer exerts a force of with an
effective perpendicular lever arm of 3.00 cm,
producing an angular acceleration of the forearm
of . What is the moment of inertia of the
boxer’s forearm?

13. A soccer player extends her lower leg in a kicking
motion by exerting a force with the muscle above
the knee in the front of her leg. She produces an
angular acceleration of and her lower
leg has a moment of inertia of .
What is the force exerted by the muscle if its
effective perpendicular lever arm is 1.90 cm?

14. Suppose you exert a force of 180 N tangential to a
0.280-m-radius 75.0-kg grindstone (a solid disk).
(a)What torque is exerted? (b) What is the angular
acceleration assuming negligible opposing
friction? (c) What is the angular acceleration if
there is an opposing frictional force of 20.0 N
exerted 1.50 cm from the axis?
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15. Consider the 12.0 kg motorcycle wheel shown in
Figure 10.36. Assume it to be approximately an
annular ring with an inner radius of 0.280 m and
an outer radius of 0.330 m. The motorcycle is on
its center stand, so that the wheel can spin freely.
(a) If the drive chain exerts a force of 2200 N at a
radius of 5.00 cm, what is the angular acceleration
of the wheel? (b) What is the tangential
acceleration of a point on the outer edge of the
tire? (c) How long, starting from rest, does it take
to reach an angular velocity of 80.0 rad/s?

FIGURE 10.36 A motorcycle wheel has a moment of inertia
approximately that of an annular ring.

16. Zorch, an archenemy of Superman, decides to
slow Earth’s rotation to once per 28.0 h by
exerting an opposing force at and parallel to the
equator. Superman is not immediately concerned,
because he knows Zorch can only exert a force of

(a little greater than a Saturn V
rocket’s thrust). How long must Zorch push with
this force to accomplish his goal? (This period
gives Superman time to devote to other villains.)
Explicitly show how you follow the steps found in
Problem-Solving Strategy for Rotational Dynamics.

17. An automobile engine can produce 200 N ∙ m of
torque. Calculate the angular acceleration
produced if 95.0% of this torque is applied to the
drive shaft, axle, and rear wheels of a car, given
the following information. The car is suspended so
that the wheels can turn freely. Each wheel acts
like a 15.0 kg disk that has a 0.180 m radius. The
walls of each tire act like a 2.00-kg annular ring
that has inside radius of 0.180 m and outside
radius of 0.320 m. The tread of each tire acts like
a 10.0-kg hoop of radius 0.330 m. The 14.0-kg
axle acts like a rod that has a 2.00-cm radius. The
30.0-kg drive shaft acts like a rod that has a
3.20-cm radius.

18. Starting with the formula for the moment of inertia
of a rod rotated around an axis through one end
perpendicular to its length , prove
that the moment of inertia of a rod rotated about
an axis through its center perpendicular to its
length is . You will find the graphics
in Figure 10.11 useful in visualizing these
rotations.

19. Unreasonable Results
A gymnast doing a forward flip lands on the mat
and exerts a 500-N ∙ m torque to slow their
angular velocity to zero. Their initial angular
velocity is 10.0 rad/s, and their moment of inertia
is . (a) What time is required for the
gymnast to exactly stop their spin? (b) What is
unreasonable about the result? (c) Which
premises are unreasonable or inconsistent?

20. Unreasonable Results
An advertisement claims that an 800-kg car is
aided by its 20.0-kg flywheel, which can
accelerate the car from rest to a speed of 30.0 m/
s. The flywheel is a disk with a 0.150-m radius. (a)
Calculate the angular velocity the flywheel must
have if 95.0% of its rotational energy is used to get
the car up to speed. (b) What is unreasonable
about the result? (c) Which premise is
unreasonable or which premises are inconsistent?

10.4 Rotational Kinetic Energy: Work and
Energy Revisited

21. This problem considers energy and work aspects
of Example 10.7—use data from that example as
needed. (a) Calculate the rotational kinetic energy
in the merry-go-round plus child when they have
an angular velocity of 20.0 rpm. (b) Using energy
considerations, find the number of revolutions the
father will have to push to achieve this angular
velocity starting from rest. (c) Again, using energy
considerations, calculate the force the father must
exert to stop the merry-go-round in two
revolutions

22. What is the final velocity of a hoop that rolls
without slipping down a 5.00-m-high hill, starting
from rest?

23. (a) Calculate the rotational kinetic energy of Earth
on its axis. (b) What is the rotational kinetic energy
of Earth in its orbit around the Sun?

24. Calculate the rotational kinetic energy in the
motorcycle wheel (Figure 10.36) if its angular
velocity is 120 rad/s. Assume M = 12.0 kg, R1 =
0.280 m, and R2 = 0.330 m.
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25. A baseball pitcher throws the ball in a motion
where there is rotation of the forearm about the
elbow joint as well as other movements. If the
linear velocity of the ball relative to the elbow joint
is 20.0 m/s at a distance of 0.480 m from the joint
and the moment of inertia of the forearm is

, what is the rotational kinetic
energy of the forearm?

26. While punting a football, a kicker rotates her leg
about the hip joint. The moment of inertia of the
leg is and its rotational kinetic
energy is 175 J. (a) What is the angular velocity of
the leg? (b) What is the velocity of tip of the
punter’s shoe if it is 1.05 m from the hip joint? (c)
Explain how the football can be given a velocity
greater than the tip of the shoe (necessary for a
decent kick distance).

27. A bus contains a 1500 kg flywheel (a disk that has
a 0.600 m radius) and has a total mass of 10,000
kg. (a) Calculate the angular velocity the flywheel
must have to contain enough energy to take the
bus from rest to a speed of 20.0 m/s, assuming
90.0% of the rotational kinetic energy can be
transformed into translational energy. (b) How
high a hill can the bus climb with this stored
energy and still have a speed of 3.00 m/s at the
top of the hill? Explicitly show how you follow the
steps in the Problem-Solving Strategy for
Rotational Energy.

28. A ball with an initial velocity of 8.00 m/s rolls up a
hill without slipping. Treating the ball as a
spherical shell, calculate the vertical height it
reaches. (b) Repeat the calculation for the same
ball if it slides up the hill without rolling.

29. While exercising in a fitness center, a man lies face
down on a bench and lifts a weight with one lower
leg by contacting the muscles in the back of the
upper leg. (a) Find the angular acceleration
produced given the mass lifted is 10.0 kg at a
distance of 28.0 cm from the knee joint, the
moment of inertia of the lower leg is

, the muscle force is 1500 N, and its
effective perpendicular lever arm is 3.00 cm. (b)
How much work is done if the leg rotates through
an angle of with a constant force exerted by
the muscle?

30. To develop muscle tone, a woman lifts a 2.00-kg
weight held in her hand. She uses her biceps
muscle to flex the lower arm through an angle of

. (a) What is the angular acceleration if the
weight is 24.0 cm from the elbow joint, her
forearm has a moment of inertia of ,
and the net force she exerts is 750 N at an
effective perpendicular lever arm of 2.00 cm? (b)
How much work does she do?

31. Consider two cylinders that start down identical
inclines from rest except that one is frictionless.
Thus one cylinder rolls without slipping, while the
other slides frictionlessly without rolling. They
both travel a short distance at the bottom and
then start up another incline. (a) Show that they
both reach the same height on the other incline,
and that this height is equal to their original
height. (b) Find the ratio of the time the rolling
cylinder takes to reach the height on the second
incline to the time the sliding cylinder takes to
reach the height on the second incline. (c) Explain
why the time for the rolling motion is greater than
that for the sliding motion.

32. What is the moment of inertia of an object that
rolls without slipping down a 2.00-m-high incline
starting from rest, and has a final velocity of 6.00
m/s? Express the moment of inertia as a multiple
of , where is the mass of the object and
is its radius.

33. Suppose a 200-kg motorcycle has two wheels like,
the one described in Problem 10.15 and is
heading toward a hill at a speed of 30.0 m/s. (a)
How high can it coast up the hill, if you neglect
friction? (b) How much energy is lost to friction if
the motorcycle only gains an altitude of 35.0 m
before coming to rest?

34. In softball, the pitcher throws with the arm fully
extended (straight at the elbow). In a fast pitch
the ball leaves the hand with a speed of 139 km/h.
(a) Find the rotational kinetic energy of the
pitcher’s arm and ball together given that the
arm's moment of inertia is and the
ball leaves the hand at a distance of 0.600 m from
the pivot at the shoulder. (b) What force did the
muscles exert to cause the arm to rotate if their
effective perpendicular lever arm is 4.00 cm and
the ball is 0.156 kg?
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35. Construct Your Own Problem
Consider the work done by a spinning skater
pulling his arms in to increase his rate of spin.
Construct a problem in which you calculate the
work done with a “force multiplied by distance”
calculation and compare it to the skater’s increase
in kinetic energy.

10.5 Angular Momentum and Its
Conservation

36. (a) Calculate the angular momentum of the Earth
in its orbit around the Sun.
(b) Compare this angular momentum with the
angular momentum of Earth on its axis.

37. (a) What is the angular momentum of the Moon in
its orbit around Earth?
(b) How does this angular momentum compare
with the angular momentum of the Moon on its
axis? Remember that the Moon keeps one side
toward Earth at all times.
(c) Discuss whether the values found in parts (a)
and (b) seem consistent with the fact that tidal
effects with Earth have caused the Moon to rotate
with one side always facing Earth.

38. Suppose you start an antique car by exerting a
force of 300 N on its crank for 0.250 s. What
angular momentum is given to the engine if the
handle of the crank is 0.300 m from the pivot and
the force is exerted to create maximum torque the
entire time?

39. A playground merry-go-round has a mass of 120
kg and a radius of 1.80 m and it is rotating with an
angular velocity of 0.500 rev/s. What is its angular
velocity after a 22.0-kg child gets onto it by
grabbing its outer edge? The child is initially at
rest.

40. Three children are riding on the edge of a merry-
go-round that is 100 kg, has a 1.60-m radius, and
is spinning at 20.0 rpm. The children have masses
of 22.0, 28.0, and 33.0 kg. If the child who has a
mass of 28.0 kg moves to the center of the merry-
go-round, what is the new angular velocity in rpm?

41. (a) Calculate the angular momentum of an ice
skater spinning at 6.00 rev/s given his moment of
inertia is . (b) He reduces his rate of
spin (his angular velocity) by extending his arms
and increasing his moment of inertia. Find the
value of his moment of inertia if his angular
velocity decreases to 1.25 rev/s. (c) Suppose
instead he keeps his arms in and allows friction of
the ice to slow him to 3.00 rev/s. What average
torque was exerted if this takes 15.0 s?

42. Construct Your Own Problem
Consider the Earth-Moon system. Construct a
problem in which you calculate the total angular
momentum of the system including the spins of
the Earth and the Moon on their axes and the
orbital angular momentum of the Earth-Moon
system in its nearly monthly rotation. Calculate
what happens to the Moon’s orbital radius if the
Earth’s rotation decreases due to tidal drag.
Among the things to be considered are the
amount by which the Earth’s rotation slows and
the fact that the Moon will continue to have one
side always facing the Earth.

10.6 Collisions of Extended Bodies in Two
Dimensions

43. Repeat Example 10.15 in which the disk strikes
and adheres to the stick 0.100 m from the nail.

44. Repeat Example 10.15 in which the disk originally
spins clockwise at 1000 rpm and has a radius of
1.50 cm.

45. Twin skaters approach one another as shown in
Figure 10.37 and lock hands. (a) Calculate their
final angular velocity, given each had an initial
speed of 2.50 m/s relative to the ice. Each has a
mass of 70.0 kg, and each has a center of mass
located 0.800 m from their locked hands. You may
approximate their moments of inertia to be that of
point masses at this radius. (b) Compare the initial
kinetic energy and final kinetic energy.

FIGURE 10.37 Twin skaters approach each other with
identical speeds. Then, the skaters lock hands and spin.
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46. Suppose a 0.250-kg ball is thrown at 15.0 m/s to a
motionless person standing on ice who catches it
with an outstretched arm as shown in Figure
10.38.
(a) Calculate the final linear velocity of the person,
given his mass is 70.0 kg.
(b) What is his angular velocity if each arm is 5.00
kg? You may treat the ball as a point mass and
treat the person's arms as uniform rods (each has
a length of 0.900 m) and the rest of his body as a
uniform cylinder of radius 0.180 m. Neglect the
effect of the ball on his center of mass so that his
center of mass remains in his geometrical center.
(c) Compare the initial and final total kinetic
energies.

FIGURE 10.38 The figure shows the overhead view of a
person standing motionless on ice about to catch a ball.
Both arms are outstretched. After catching the ball, the
skater recoils and rotates.

47. Repeat Example 10.15 in which the stick is free to
have translational motion as well as rotational
motion.

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum

48. Integrated Concepts
The axis of Earth makes a 23.5° angle with a
direction perpendicular to the plane of Earth’s
orbit. As shown in Figure 10.39, this axis
precesses, making one complete rotation in
25,780 y.
(a) Calculate the change in angular momentum in
half this time.
(b) What is the average torque producing this
change in angular momentum?
(c) If this torque were created by a single force (it
is not) acting at the most effective point on the
equator, what would its magnitude be?

FIGURE 10.39 The Earth’s axis slowly precesses, always
making an angle of 23.5° with the direction perpendicular to
the plane of Earth’s orbit. The change in angular momentum
for the two shown positions is quite large, although the
magnitude is unchanged.
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