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Part 6: AC Circuits 
 

University Physics V2 (Openstax):  Chapters 14 & 15   

Physics for Engineers & Scientists (Giancoli):  Chapter 30 
 

Mutual Inductance: Pss MI ΦN =  
 

 

The magnetic field from the first (primary) coil will 

induce an emf in a nearby secondary coil. 
 

PPss IB ΦN 

 

• This is not an equality as B through the secondary is not the same as the magnetic field through 

the primary (it falls off with distance) 

• So we insert a constant and make an equality:   Pss MI ΦN =  

• 
dt

dI
M

dt

)d(MI
 

dt

)Φd(N
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dΦ
N emf PPsss

s −=−=−=−=  

• Average EMF:
t

I
M emf P




−=  

• Mutual Inductance (M) →  Units  1 Vs/A = 1 H  (one “Henry”)  
 

Example: The average emf induced in the secondary coil is 0.12V when the current in the primary 

changes from 3.4A to 1.6A in 0.14s.  What is the average mutual inductance of the coils?  
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Self Inductance: 

• Magnetic fields generated by individual loops create induced emfs in other loops in the coil.  We 

call this “self inductance” or just “inductance”. 

• 
dt

dI
Lemf 

dt

dI
Memf P −=→−=        

• Inductance (L) →  Units  1 Vs/A = 1 H  (one “Henry”)  

• Schematic symbol for an inductor:    

• Energy Stored in an Inductor:  2
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Example:  A 2.00A current flows through a 20.0 cm long solenoid having 500 turns with each turn 

having an area of 3.00x10-2m2.   Determine (a) the inductance of the solenoid and (b) the 

energy stored in the solenoid.  
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RL Circuits Charging 
 

 
 

• Assume the inductor L has no stored energy (i.e. no current) when the switch S1 closes at t=0. S2 

remains open. 

• As S2 is open, no current flows through it.  The right branch can be disregarded.   We have a 

single loop with VS, R1 and L. 

• As the inductor starts with no stored energy, this is referred to as “charging”. 

• The current through L builds gradually (the rate it grows is proportional to VL).  Thus, after the 

switch closes (t=0+), I =0.  

• SLR VtVRtIVtI ======= +++ )0(           0)0(         0)0(  

• If we wait a long time (t → ), the circuit will reach equilibrium. 

• 
1
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• Kirchoff’s Voltage Law: 01 =−−
dt
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RL Circuits Discharging 
 

 
 

• The current through L is I0 when the switch S1 is opened and S2 is closed at t=0. 

• As S1 is open, no current flows through it.  The left branch can be disregarded.   We have a 

single loop with R2 and L. 

• As the inductor starts with stored energy, this is referred to as “discharging”. 

• The current through L changes gradually (the rate it grows is proportional to VL).  Thus, after the 

switch closes (t=0+), I = I0.  

• 20)0( RItVV RL === +  

• If we wait a long time (t → ), the circuit will reach equilibrium. 

• 0)()(     0)( =→=→=→ tVtVtI RL
 

• Kirchoff’s Voltage Law:     02 =− IR
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Example:  A 200 mH inductor is connected in series with a 40.0  resistor.   If no energy is stored in 

the inductor when the pair are connected to a 12.0V battery (of negligible resistance), how 

long does it take until the current is 0.200A?  
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AC Circuits 
 

 
 

• As the same current flows through each element, let’s start by assuming a simple AC current and 

determine the voltage across each element. 

• t)Cos(II 0=   LCRS VVVV ++=  

• Resistor: t)Cos(RIIRVR == 0  

• Inductor: )tCos(LIt)Sin(LI
dt

dI
LVL +=−== 9000   

• Capacitor: )tCos(
C

I
t)Sin(

C

I
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C
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C
VC −====  90
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• Define Reactance: 
C

XLX CL



1

     ==   

• Ohm’s Law holds for inductors and capacitors: XIV 00 =  

 

In AC circuits, inductors (L) and capacitors (C) act like frequency dependent  

resistors (XL and XC) with a 90 phase shift. 

 

Example:  A 200 mH inductor is connected in series with a 16.0 Hz source with a peak voltage of 20.0 

V.  (a)  What current flows through the circuit?  (b)  At what frequency would the current be 

2.00A?  
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AC Circuits: RLC Circuit (Phasors) 
 

 

Resistor:  t)Cos(RIIRVR == 0  

Inductor:  )tCos(XIV LL += 900   

Capacitor:  )tCos(XIV CC −= 900   
 

LCRS VVVV ++=  
 

• We could add these using trig identities, but there’s an easier way 
 

 

If you take a vector of magnitude V and let it rotate at 

constant angular frequency (), the x-component of the 

vector will be:  VX=VCos () =VCos (t+0)  

 

We can represent VR, VL, and VC as rotating vectors. 

 

• As they rotate at the same angular frequency, their relative angular positions will remain 

constant.  Thus, we can look at their orientation at any time (we’ll choose t=0).   Because the 

relative phase is all that matters, these are called “phasors”. 
•  

 

LCRS VVVV


++=  

The phase angle on VR is 0.  

The phase angle on VL is +90.  

The phase angle on VC is -90.  
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)θtCos(VV SSS += 0

•  

Complex Numbers: 1      where −=+= ibiaz  

• Complex Conjugate    * bia z −=  

• Examples:     512          43 21 iziz −=+=  

• Addition:    iiiizz −=−++=−++=+ 15)54()123()512()43(21
  

• Subtraction:    iiiizz 99)54()123()512()43(21 +−=++−=−−+=−  

• Multiplication:   
iiiii

iiiiiizz
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• Division:   
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Euler’s Theorem:    iSinCos +=ie  
•  
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Examples:     512          43 21 iziz −=+=  

• Magnitudes:   13512z     543z 22
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• Multiplication:   
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AC Circuits: RLC Circuit (Complex Numbers) 
•  

 

• Resistor:  t)Cos(RIIRVR == 0  

• Inductor:  )tCos(XIV LL += 900   

• Capacitor:  )tCos(XIV CC −= 900   
 

• Inductor:  
LL iXX →    (“i" = +90) 

• Capacitor:  CC iXX −→   (“-i" = -90)

• Real → “Resistance” (R) 

• Imaginary → “Reactance” (X) 

• Complex → “Impedance” (Z)  
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)CLCLEQ Xi(XRiXiXRZ −+=−+=  
22 )CLEQ X(XRZ −+=  
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== 0 00 It)Cos(II   ( )( )  === EQ0EQ0 ZZ0 IIIZV  

 

Example:  Find I1, I2, and IS. 

•  

 
 

1.  Find XL and XC 

Ω. i H) . rad/s)(.i(LiiXL 0052000025 ===    

Ω.i 
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2.  Find ZEQ1 and ZEQ2 (in both forms)  

Ω.iiXRZ LEQ 0050.1211 +=+=  
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3.  Use Ohm’s Law to find I1 and I2 (Put them in both forms and write as a cosine)   

 −=



== 62.22154.1

62.220.13

00.15

1

1 A
V

Z

V
I

EQ

S  

 AiASinAiCosAI 444.0065.1)62.22()154.1()62.22()154.1(1 −=−+−=  

 ]6.22)/ 0.25[()15.1(1 −= tsradCosAI  

 =
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== 13.5300.3
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2

2 A
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 AiASinAiCosAI 40.280.1)13.53()00.3()13.53()00.3(2 +=+=  

 ]1.53)/ 0.25[()00.3(2 += tsradCosAI  

 

4.  Use Kirchoff’s Current Law to find IS (Put it in both forms and write as a cosine)   

 ( ) ( ) AiAAiAAiAIIIS 956.1865.240.280.1444.0065.121 +=++−=+=  

AA)(A)(I S 469.3956.1865.2 22 =+=  =







= − 34.32

865.2

956.11

A

A
TanS  

 = 32.34469.3SI  

 ]3.34)/ 0.25[()47.3( += tsradCosAIS  

 
 

Example:  Find ZEQ and use it to get IS. 
•  

 
 

1.  Find XL and XC (From previous problem) 

Ω. i H) . rad/s)(.i(LiiXL 0052000025 ===    
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=+=+= 62.220.130050.1211 Ω.iiXRZ LEQ  

−=−=−= 13.5300.500400.322 Ω.iiXRZ CEQ  

 

 

2.  Combine ZEQ1 and ZEQ2 like parallel resistors (put into both forms)  

  
( ) ( )

)00.400.3()00.50.12(
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=
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)00.1()0.15(00.10.15 122 Tani  
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3.  Use Ohm’s Law to find IS. 

 =
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== 32.34469.3

32.34324.4

00.15
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s
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 ]3.34)/ 0.25[()47.3( += tsradCosAIS  

 

Example:  Find IR, IL, and IC.   (Let’s use nodal analysis.) 
 

 
 

1.  Find XL and XC. 
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 2.  Use Kirchoff’s Current Law.  LCR III =+  

 

 3.  Write Kirchoff’s Law in terms of Node Voltages. 

  
L
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− 21  
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 4.  Solve for VA. 
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  ( ) ( ) AAA ViVViVV 15300.151200.1220 −=−+−  

  ViVSinViCosVVV 50.70.13)30()0.15()30()0.15(300.152 +=+==  
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 5.  Use VA to get the currents. 

  −=−=


+−
= 34.564949.3909.29371

3.00

)727.819.6(0.12
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ViVV
IR  

  

=+=

−

−
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00.5
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i

ViV

i

ViVViV
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00.4

727.819.6
−=−=



+
= AAiA.

i

ViV
IL  

 

 6.  Check your answers using Kirchoff’s Current Law. 

  ( ) ( ) LCR IAiAA.iA.A.iA.II =−=++−=+ 547.1182.23621245090929371  

 

 7.  Write the currents as cosines if needed. 

  ]3.56)/ 0.20[()49.3( −= tsradCosAIR
 

  ]8.79)/ 0.20[()38.1( += tsradCosAIC  

  ]4.35)/ 0.20[()68.2( −= tsradCosAIL
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AC Power: ( )V −= IRMSRMSAVG CosVIP  

• The “Cos ()” is generally referred to as the “Power Factor”.  

• For a capacitor or inductor, the angle between its voltage and current is 90, meaning these 

devices consume no power (they store and return it).   
 

 

Phase Matching  

• It is more efficient when the power factor for the source is 1.  So, it is preferable that the source 

voltage and current are in phase.  When they aren’t an additional element (capacitor or inductor) 

may be added in series with the source to correct this.  
•  

  

−=−= 438.2751.332.34324.4 iZEQ  

 

If we place “+i2.438” in series, the imaginary part will 

cancel, making the power factor 1.  
 

mHsradXL L 5.97/0.25/438.2/ === 
•  

 

Frequency Limits  

• High Frequency Limit ( is very large):   →  

• Inductor:  →= LXL    {Open Circuit} 

• Capacitor:  0
C

1
XC →=


   {Short Circuit} 

• Low Frequency Limit ( is very small):   →0  

• Inductor:  0LXL →=    {Short Circuit} 

• Capacitor:  →=
C

1
XC


  {Open Circuit} 

 

Example:  Find IS in the high and low freq limits. 

 
•  

 

High Frequency:  5.00A
3.00

15.0V

R

V

2
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==SI  

 

Low Frequency:  1.25A
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15.0V

R

V

1

S =


==SI  
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Passive Filters  
•  

  

High Frequency:  C → Short Circuit,   

VOUT = VIN   (high frequency signals “Pass”) 

Low Frequency:  C → Open Circuit,  

VOUT = 0   (Low frequency signals “cut off”) 
 

This is called a “High Pass Filter” 
•  
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=
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Resonance : At a specific frequency, called the resonant frequency, the circuit will have a greater 

response (more current) than at others. 
•  

 

)CLCLEQ Xi(XRiXiXRZ −+=−+=  

 

22 )( CL
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XXR
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V
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1
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1
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0

0 ==− 



C

L

3-Phase Transmission  

 
By symmetry the connecting point on the right must be a ground (no ground wire needed!) 

 


