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Part 6: AC Circuits

College Physics (Openstax): Chapter 23
Physics: Principles with Applications (Giancoli): Chapter 21

Mutual Inductance: N@, =Ml,

The magnetic field from the first (primary) coil will
TR (7 B induce an emf in a nearby secondary coil.
........
Iy g N @, o By <l

« This is not an equality as B through the secondary is not the same as the magnetic field through
the primary (it falls off with distance)

« So we insert a constant and make an equality: N,@, =MI,

. emf:_NSAQ:_A(NS@S) __AML,) _ Al
At At At At

* Mutual Inductance (M) — Units 1V-s/A=1H (one “Henry”)

Example: The average emf induced in the secondary coil is 0.12V when the current in the primary
changes from 3.4A to 1.6A in 0.14s. What is the average mutual inductance of the coils?
emf — —M Al M __emf-4r _ (012V)(014s)

At A, 16A—34A

=9.3mH

Self Inductance:

» Magnetic fields generated by individual loops create induced emfs in other loops in the coil. We
call this “self inductance” or just “inductance”.

« emf =—-M AL, — emf :—Lg
t

* Inductance (L) —» Units 1V-s/A=1H (one “Henry”)

—/ 000000 —

- Energy Stored in an Inductor: PE, = % LI1?

» Schematic symbol for an inductor:

- Solenoid L= u,n*Al
N nl nl)A
e PE =1L =LAz =L 2nt12)a =L pal
2 2 24, 24
«  Energy Density(of B) = Energy _ 1 g2
Volume 2y,
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Example: A 2.00A current flows through a 20.0 cm long solenoid having 500 turns with each turn
having an area of 3.00x102m?2. Determine (a) the inductance of the solenoid and (b) the
energy stored in the solenoid.

2
L = ypn* Al = (4“107 T'—Amj(o 288 j (3.00x102m?)(0.200m) = 47.1mH
. m

PE, = % LI? = % (47.1239mH)(2.00A)2 = 94.2mJ

RL Circuits Charging

» Assume the inductor L has no stored energy (i.e. no current) when the switch S; closes at t=0. S
remains open.

* As Sy is open, no current flows through it. The right branch can be disregarded. We have a
single loop with Vs, Ry and L.

* As the inductor starts with no stored energy, this is referred to as “charging”.

» The current through L builds gradually (the rate it grows is proportional to V). Thus, after the
switch closes (t=07), 1 =0.

° I(t:O+)=0 VR=I(t=0+)R=0 VL(t:0+)=VS

* If we wait a long time (t — o), the circuit will reach equilibrium.

Al V
. VL:—LE:O Vi =Vy(t > o) =1R, I(t—>oo)=R—l
Al
« V,-RI-L=—=0
S 1 At
—tR —tR
o =\§{1—et} V =Vee b
1
-t
» Time Constant : r=L/R V, =Vser
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RL Circuits Discharging

» The current through L is lo when the switch S; is opened and S; is closed at t=0.

* As Sy is open, no current flows through it. The left branch can be disregarded. We have a
single loop with Rz and L.

* As the inductor starts with stored energy, this is referred to as “discharging”.

» The current through L changes gradually (the rate it grows is proportional to VV\). Thus, after the
switch closes (t=07), I = lo.

© Vi =Vi(t=0")=1I,R,
+ If we wait a long time (t — o), the circuit will reach equilibrium.

* I(t—>x)=0 V (t—>x)=V;({t—>x)=0

e Kirchoff’s Voltage Law: L j—i -R,I =0
—tRy —tRy —tR, —tR,
s V =I,Ret =Vet I=—Lel =let
RZ
-t
« Time Constant : r=L/R V, =Ver

Example: A 200 mH inductor is connected in series with a 40.0 Q resistor. If no energy is stored in
the inductor when the pair are connected to a 12.0V battery (of negligible resistance), how
long does it take until the current is 0.200A?

—tR, —tRy R —_
| =Vs 1-et R =1l-et et :l——”:\>1 R - R
A Vg L

o L[, IR]__0200H |n{1-(O'ZOOA)(‘D'OQ)}=5.49ms
V, 40.0Q 12.0V
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AC Circuits

* As the same current flows through each element, let’s start by assuming a simple AC current and
determine the voltage across each element.

o | =1,Cos(at) Vs =V +V. +V,
* Resistor: Vi =IR=1,R - Cos( wt)
 Inductor: V, =-olLl,Sin(at) = oLl ,Cos(wt +90°)

] | . |
« Capacitor: V. =—2Sin(wt) = —2 Cos(wt —90°
p c= ¢ (at) e ( )

+ Define Reactance: X, =awL X = 1
aC
« Ohm’s Law holds for inductors and capacitors: V,=1,X

In AC circuits, inductors (L) and capacitors (C) act like frequency dependent
resistors (X. and Xc) with a 90 °phase shift.

Example: A 200 mH inductor is connected in series with a 16.0 Hz source with a peak voltage of 20.0
V. (a) What current flows through the circuit? (b) At what frequency would the current be
2.00A?

a) X, =al =24 = 27(16.0Hz)(0.200H) = 20.10620)

oV 200V gg5ma
X, 2010
o) X, =220V _1500
1, 2.00A
X, 1000

=7.96Hz

" 24 27(0.200H)
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AC Circuits: RLC Circuit (Phasors)

I appp Resistor: V; = IR =,R-Cos( wt)
. Inductor: V, =1,X, Cos(wt+90°)
[ SR—
L Capacitor: V. =1,X.Cos(awt —90°)
0 Vo =V, +V. +V,

Y

We could add these using trig identities, but there’s an easier way

If you take a vector of magnitude V and let it rotate at
v constant angular frequency (), the x-component of the

vector will be: Vx=V-Cos (0) =V-Cos (wt+00)

Vg =V, +V, +V,

The phase angle on VR is 0°.
The phase angle on V is +90°.
The phase angle on V¢ is -90°.
Ve, =V, Ve, =V, -V,

We can represent Vr, VL, and V¢ as rotating vectors.

As they rotate at the same angular frequency, their relative angular positions will remain
constant. Thus, we can look at their orientation at any time (we’ll choose t=0). Because the
relative phase is all that matters, these are called “phasors™.

f

Ve - Vso :’\75‘ = \/Vszfx +V82—y = \/VR2 +(V, _Vc)z =

= JORY? +(1X, —1Xc)? = 1YR? +(X, —X,)?

0, =Tan| Yo =Ve | _pani[ X =Xc
° VA R

Vs =V,,Cos(wt +6)

Complex Numbers: z=a+bi where i=+/—-1

Complex Conjugate z*=a—bi

Examples:  z

=3+4i  z,=12-5i

Addition: 7, +2z, = (3+4i)+(12-5i) = (3+12) + (4—5)i =15—i

Subtraction:

Multiplication:

2, — 2, = (3+4i) — (12-5i) = (3-12) +(4+5)i =—9+9i
2, %2, = (3+4i) x (12— 5i) = (3)(12) + (3)(=5i) + (4i)(12) + (4i)(=5i) =
— 36— 15i + 48i — 20i2 = 36+ 33i + 20 = 56+ 33;
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z,  (3+4i) _ (3+4i) (12+5) _  (3)(12)+(3)(5i)+ (4i)(L2) + (4i)(5i)
7, (12-5i) (12-5i) (12+5i) (12)(12)+(12)(5i)+ (-51)(12) + (-5i)(5i)
_36+15i+48-20 _16+63i _ 16 63
144+60i—60i+25 169 169 169

* Division:
i=0.095+0.373i

Euler’s Theorem: €'Y =Cos@+iSing

7 =vz 2% =Va? +b? 0= Tan'l(gj

a
asbi a=|z7Cos®  b=|zSing

Re

[zle" =|z|Cos 6 +i[z[Sind = a+bi

i6; i6, _ i(6,+6,)

- Multiplication: z,-z, =|z,|e'* -|z,[e'* =|z,]z,|e
* Division: 4 |Zl|eizl :ﬂei(el—az)
z, |26 |z,

Examples: z =3+4i z,=12-5i
»  Magnitudes: |z,|=+3"+4* =5  |z,|=+12% +5° =13
« Angles: #=Tan" 4 _s310 0,=Tan™ O 06
3 12
* Representation: z, =3+4i=5"*"" =5/53.1° z,=12-5i=13¢""*" =13/-22.6°
21 . 22 — 5€i53.1° -13e—i22.6’ — 5 _13ei(53.1°—226°) — 65ei30.5°
65e"**" =[65C0s(30.5°)]+i[65Sin(30.5°)] = 56 + 33i

i531°
« Division: 2= _ 3 gieara26) _ 3 1T _ 00954 0,373
z, 13¢72° 13 13

» Multiplication:

AC Circuits: RLC Circuit (Complex Numbers)

I— « Resistor: V; =IR=1,R-Cos( wt)
—  AANN————
R « Inductor: V, =1,X, Cos(wt+90°)

v, @ L - Capacitor: V. = I,X.Cos( @t —90°)
L * Inductor: X, —iX, (“i"=+90°)
B « Capacitor: X. = —iX. (“-i" =-90°)

* Real — “Resistance” (R)
* Imaginary — “Reactance” (X)
+  Complex — “Impedance” (Z)
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Zeo =R+IX, —iX¢ = R+i(X, - X¢) Zeo| = JRE+ (X~ X)? HZTanl(XL;{xcj

| =1,Cos(at) = 1,20° V =12 = (1,£0°0Ze0] £6)= 10[Z¢0| 26

Example: Find Iy, I2, and Is.

I,
ool o |
12.0 O 10.0 mF —
Vs
L R,
0.200 H 3.00 ©

V; = (15.0 V)Cos[ (25.0 rad/s)t |

1. Find X and Xc
iX, =il =i(250 rad/s)(0.200 H) = i5002

X == —! = —i400Q
oC (250 rad/s)0.0100F)

2. Find Zgq1 and Zeqg2 (in both forms)
Zeo =R, +iX, =12.0Q+i5000

Zeo, = R, —iX =3.00Q-14.00Q

Zeor| =R+ X7 = /(1200 +(5000) =130Q

6, =Tan™ Al Tanl(w] =22.62°
R, 12.0Q

1Zego| = RE+XZ = /(3002 +(4002)* =500

0, =Tan™| — Xc :Tanl(_4'oogj =-53.13°
3.00Q

2
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3. Use Ohm’s Law to find I1 and I> (Put them in both forms and write as a cosine)

| =s o WL 500, 5960
Zoo, 13.00/2262°

I, = (1.154A)Cos(—22.62°) +i(1.154A)Sin(—22.62°) =1.065A—i0.444A
I, =(@.15A)Cos[(25.0rad / s)t —22.6°]

OV, 15.0V.£0°

,=—2 = =3.00A/53.13°
Zeo, 5.00Q/-5313°

I, =(3.00A)Co0s(53.13°) +i(3.00A)Sin(53.13°) =1.80A+i2.40A
I, =(3.00A)Cos[(25.0rad/s)t +53.1°]

4. Use Kirchoff’s Current Law to find Is (Put it in both forms and write as a cosine)

lg =1,+1,=(1.065A—i0.444A)+(1.80A+i2.40A)= 2.865A +i1.956A

1.956A
I.|=+/(2.865A)° +(1.956A) =3.469A O, =Tan™ =34.32°
5] =(2:865A)" +(1.956A) s =Tan [2_865A]
|, =3.469./34.32°
|, = (3.47A)Cos[(25.0 rad / s)t +34.3°]
Example: Find Zeg and use it to get Is.
I,—+ I,—»
I1
sl e
12.0 ﬂ 10,0 mF —
Vs
L R>
0.200 H 3.00 Q2

Vi = (15.0 V)Cos[ (25.0 rad/s)t |
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1. Find X. and Xc (From previous problem)
iX, =il =i(250 rad/s)(0.200 H) = i5.00¢2

= = —i4000
wC (250 rad/s)0.0100F)

—iX

Zeor = R +iX =12.0Q+i5000Q =13.0Q0./22.62°

Zeo, = R, —IX ¢ =3.00Q-i400Q = 5.00Q/ —53.13°

2. Combine Zeq1 and Zeqe like parallel resistors (put into both forms)

Zew Zeg,  (13.00222.62°)-(5.00Q/ ~53.13°)
Zeoy +Zg,  (12.0Q+i5.0002) +(3.00Q —i4.0002)

ZEQ = ZEQl ” ZEQZ =

_ 65.00°2-30.51°  65.0Q°~/-30.51°

EQ = - = =4.3240/ —34.32° =3.751Q0 —-12.438Q
15.0Q2 +11.00Q2 15.03Q0/3.81°

15.0Q +i1.00Q = ,/(15.0Q)? + (1.00Q2)° 4Tanl(%j =15.030/3.81°

4.32403- Cos(—34.32°) +14.324Q2- Sin(—34.32°) = 3.751Q—12.438Q

3. Use Ohm’s Law to find Is.

V,  150V/0°
43240/ —34.32°

=3.469A£34.32°

I
S
Ly

I =(3.47A)Cos[(25.0 rad / s)t + 34.3°]

Example: Find Ig, I, and lIc. (Let’s use nodal analysis.)

R ug F
10,0 m
I 3.00 Q) I I,
I | |
Vv L l A
1 0.200 H V2

V; = (12.0 V)Cos[ (20.0 rad/s)t ]
V, = (15.0 V)Cos[ (20.0 rad/s)t + 30°]
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1. Find XL and Xc.
iIX, =il = (200 rad/s)(0.200H)=i4.0022

—iX, == _ = -i500Q
oC (200 rad/s)(0.0100F)

2. Use Kirchoff’s Current Law. Iz +1. =1,

3. Write Kirchoff’s Law in terms of Node Voltages.

ViV, VooV, Y,
R —iXe X,

12.0V£0°-V,  15.0V£30°-V, _ V,
3.00Q —i5.000 i4.000

4. Solve for Va.
O O I 12.0V£0°-V, i(15.0v£30°-V,) -iV,

i i 2 -1 3000 | 500Q 4000
20(12.0vV.£0° -V, )+i12(15.0vV.£30° -V, ) = —i15V,

V, =15.0V.£30° = (15.0V)Cos(30°) +i(15.0)Sin(30°) =13.0V +i7.50V
240V —20V,, +i156V —90V —i12V, =15V,

150V +i156V =20V, —i15V, +il2V, =(20-i3V,

_ 150V +i156V  216.4V.£4612°

A - = =10.70V.£54.65° =619V +i8.727V
20—i3 20224/ -853°

5. Use Va to get the currents.

_12.0V (6.1 +I8.727V) 1 oar h 000 A _ 3 4949A - 56.34°

|
§ 3.00Q
| _13.0V +i7.50v —(6.19V +i8.727V) _ 6.8V —iL.227V
¢ ~i5.00Q ~i5.00Q
— 0.245A+i1.362A =1.384A/79.80°
= 6'19\_/ TI872IV 5 189A_i1.548A = 2.675A — 35.35°
14.00Q
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6. Check your answers using Kirchoff’s Current Law.

lp + 1. =(1937A—i2909A)+(0.245A +i1362A) = 2.182A~i1.547A= I,

7. Write the currents as cosines if needed.

I, =(3.49A)Cos[(20.0 rad/s)t —56.3°]
l. =(1.38A)Cos[(20.0 rad /s)t +79.8°]

I, =(2.68A)Cos[(20.0 rad/s)t —35.4°]

AC Power:  Pye = IRMSVRMSCOS(QI _gv)
* The “Cos (AD)” is generally referred to as the “Power Factor”.

» For a capacitor or inductor, the angle between its voltage and current is 90°, meaning these
devices consume no power (they store and return it).

Phase Matching

» It is more efficient when the power factor for the source is 1. So, it is preferable that the source
voltage and current are in phase. When they aren’t an additional element (capacitor or inductor)
may be added in series with the source to correct this.

Io—» Ion——»
Il
Ry l C 1
12.0 Q 10.0 mF —
Vs
L R>
0.200 H 3.00 QQ

V; = (15.0 V)Cos[ (25.0 rad/s)t |

Zyo =4.32400/ - 34.32° =3.751Q ~12.438Q

If we place “+i2.438Q” in series, the imaginary part will cancel, making the power factor 1.

L=X, /w=2.438Q/25.0rad/s=97.5mH
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Frequency Limits

* High Frequency Limit (o is very large): o—o

* Inductor: X, =@l —o {Open Circuit}
« Capacitor: X, = % — 0 {Short Circuit}

» Low Frequency Limit (o is very small): »—0

* Inductor: X =awL —>0 {Short Circuit}

« Capacitor: X, :i — oo {Open Circuit}

Example: Find Is in the high and low freq limits.

Is—b Jo—
Il
R, l C L High Frequency: I, = Vs _15.0V _ 5.00A
12.0Q 10.0 mF R, 3.00Q2
(V)
V. 15.0V
R, _ Vs ~
0200 H 3.00 Q Low Frequency: I = R_1 =200 1.25A

Vi = (15.0 V)Cos[ (25.0 rad/s)t ]

Passive Filters

High Frequency: C — Short Circuit,

C Voutr=Vin (high frequency signals “Pass”)
vn_® R% Vour Low Frequency: C — Open Clrcwtj
Voutr=0 (Low frequency signals “cut off”)
o This is called a “High Pass Filter”
Vv i i
| =N Zeo =R-iX,=R-——
Zeq C
R
Vour =V = IR Vour =Z_VIN
EQ
R wRC
V = T V e ——
ouT R_L IN ouT CURC—l IN
oC
Gain(G) = Vour|_| @RC | wRC
| Vin | |a)RC—I| \/(CORC)2 +1
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Thecutoff frequency (f.) is the frequency whereG = COuax

J2
_1 _%e_ 1
RC ¢ 27 2mRC
Resonance : At a specific frequency, called the resonant frequency, the circuit will have a greater
response (more current) than at others.

Zeo =R+IX, —iX¢ = R+i(X, - X¢)

o RC =1 O

V; = V;Cos(mt + 240°)

By symmetry the connecting point on the right must be a ground (no ground wire needed!)
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